Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite

被引:387
作者
Bell, Nicholas J. [1 ]
Ng, Yun Hau [1 ]
Du, Aijun [2 ]
Coster, Hans [3 ]
Smith, Sean C. [2 ]
Amal, Rose [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn, ARC Ctr Excellence Funct Nanomat, Sydney, NSW 2052, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
X-RAY PHOTOELECTRON; CHARGE-TRANSPORT; FILMS; ELECTRON; PERFORMANCE; RECOMBINATION; REDUCTION; SCAFFOLDS; STORAGE;
D O I
10.1021/jp1113575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solution-phase photocatalytic reduction of graphene oxide to reduced graphene oxide (RGO) by titanium dioxide (TiO2) nanoparticles produces an RGO-TiO2 composite that possesses enhanced charge transport properties beyond those of pure TiO2 nanoparticle films. These composite films exhibit electron lifetimes up to four times longer than that of intrinsic TiO2 films due to RGO acting as a highly conducting intraparticle charge transport network within the film. The intrinsic UV-active charge generation (photocurrent) of pure TiO2 was enhanced by a factor of 10 by incorporating RGO; we attribute this to both the highly conductive nature of the RGO and to improved charge collection facilitated by the intimate contact between RGO and the TiO2, uniquely afforded by the solution-phase photocatalytic reduction method. Integrating RGO into nanoparticle films using this technique should improve the performance of photovoltaic devices that utilize nanoparticle films, such as dye-sensitized and quantum-dot-sensitized solar cells.
引用
收藏
页码:6004 / 6009
页数:6
相关论文
共 39 条
[1]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[2]   Tuning the gap in bilayer graphene using chemical functionalization: Density functional calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2008, 78 (08)
[3]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[4]   Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods [J].
Fabregat-Santiago, F ;
Garcia-Belmonte, G ;
Bisquert, J ;
Zaban, A ;
Salvador, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (02) :334-339
[5]   Photofunctional nanomaterials composed of multiporphyrins and carbon-based π-electron acceptors [J].
Fukuzumi, Shunichi ;
Kojima, Takahiko .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (13) :1427-1439
[6]   Preparation of graphite nanoplatelets and graphene sheets [J].
Geng, Yan ;
Wang, Shu Jun ;
Kim, Jang-Kyo .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 336 (02) :592-598
[7]   PHOTOELECTROCHEMICAL STUDIES OF COLLOIDAL TIO2 FILMS - THE EFFECT OF OXYGEN STUDIED BY PHOTOCURRENT TRANSIENTS [J].
HAGFELDT, A ;
LINDSTROM, H ;
SODERGREN, S ;
LINDQUIST, SE .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 381 (1-2) :39-46
[8]   Organization of supramolecular assemblies of fullerene, porphyrin and fluorescein dye derivatives on TiO2 nanoparticles for light energy conversion [J].
Hasobe, T ;
Hattori, S ;
Kamat, PV ;
Urano, Y ;
Umezawa, N ;
Nagano, T ;
Fukuzumi, S .
CHEMICAL PHYSICS, 2005, 319 (1-3) :243-252
[9]   Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules [J].
Hu, Linhua ;
Dai, Songyuan ;
Weng, Jian ;
Xiao, Shangfeng ;
Sui, Yifeng ;
Huang, Yang ;
Chen, Shuanghong ;
Kong, Fantai ;
Pan, Xu ;
Liang, Linyun ;
Wang, Kongjia .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (02) :358-362
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339