Hypermutation of immunoglobulin genes in memory B cells of DNA repair-deficient mice

被引:107
作者
Jacobs, H
Fukita, Y
van der Horst, TJ
de Boer, J
Weeda, G
Essers, J
de Wind, N
Engelward, BP
Samson, L
Verbeek, S
de Murcia, JM
de Murcia, G
te Riele, H
Rajewsky, K
机构
[1] Basel Inst Immunol, CH-4005 Basel, Switzerland
[2] Univ Cologne, Inst Genet, D-50931 Cologne, Germany
[3] Erasmus Univ, Dept Cellular Biol & Genet, NL-3000 DR Rotterdam, Netherlands
[4] Netherlands Canc Inst, Dept Mol Carcinogenesis, NL-1066 CX Amsterdam, Netherlands
[5] Univ Utrecht Hosp, Dept Immunol, NL-3508 GA Utrecht, Netherlands
[6] Universite Louis Pasteur, Ecole Super Biotechnol Strasbourg, F-67400 Illkirch Graffenstaden, France
[7] Harvard Univ, Sch Publ Hlth, Dept Mol & Cellular Toxicol, Boston, MA 02115 USA
关键词
DNA repair; DNA repair-deficient mice; memory B cells; naive B cells; somatic mutations;
D O I
10.1084/jem.187.11.1735
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
To investigate the possible involvement of DNA repair in the process of somatic hypermutation of rearranged immunoglobulin variable (V) region genes, we have analyzed the occurrence, frequency, distribution, and pattern of mutations in rearranged V lambda l light chain genes from naive and memory B cells in DNA repair-deficient mutant mouse strains. Hypermutation was found unaffected in mice carrying mutations in either of the following DNA repair genes: xeroderma pigmentosum complementation soup (XP)A and XPD, Cockayne syndrome complementation group B (CSB), mutS homologue 2 (MSH2), radiation sensitivity 54 (RAD54), poly (ADP-ribose) polymerase (PARP), and 3-alkyladenine DNA-glycosylase (AAG). These results indicate that both subpathways of nucleotide excision repair, global genome repair, and transcription-coupled repair are not required for somatic hypermutation. This appears also to be true for mismatch repair, RAD54-dependent double-strand-break repair, and AAG-mediated base excision repair.
引用
收藏
页码:1735 / 1743
页数:9
相关论文
共 59 条
  • [1] hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6
    Acharya, S
    Wilson, T
    Gradia, S
    Kane, MF
    Guerrette, S
    Marsischky, GT
    Kolodner, R
    Fishel, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) : 13629 - 13634
  • [2] TIMING, GENETIC REQUIREMENTS AND FUNCTIONAL CONSEQUENCES OF SOMATIC HYPERMUTATION DURING B-CELL DEVELOPMENT
    ALLEN, D
    CUMANO, A
    DILDROP, R
    KOCKS, C
    RAJEWSKY, K
    RAJEWSKY, N
    ROES, J
    SABLITZKY, F
    SIEKEVITZ, M
    [J]. IMMUNOLOGICAL REVIEWS, 1987, 96 : 5 - 22
  • [3] SOMATIC DIVERSIFICATION OF IMMUNOGLOBULIN HEAVY-CHAIN VDJ GENES - EVIDENCE FOR SOMATIC GENE CONVERSION IN RABBITS
    BECKER, RS
    KNIGHT, KL
    [J]. CELL, 1990, 63 (05) : 987 - 997
  • [4] THE DYNAMIC NATURE OF THE ANTIBODY REPERTOIRE
    BEREK, C
    MILSTEIN, C
    [J]. IMMUNOLOGICAL REVIEWS, 1988, 105 : 5 - 26
  • [5] ELEMENTS REGULATING SOMATIC HYPERMUTATION OF AN IMMUNOGLOBULIN-KAPPA GENE - CRITICAL ROLE FOR THE INTRON ENHANCER MATRIX ATTACHMENT REGION
    BETZ, AG
    MILSTEIN, C
    GONZALEZFERNANDEZ, A
    PANNELL, R
    LARSON, T
    NEUBERGER, MS
    [J]. CELL, 1994, 77 (02) : 239 - 248
  • [6] DISTRIBUTION OF MUTATIONS AROUND REARRANGED HEAVY-CHAIN ANTIBODY VARIABLE-REGION GENES
    BOTH, GW
    TAYLOR, L
    POLLARD, JW
    STEELE, EJ
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (10) : 5187 - 5196
  • [7] ORIGIN OF ANTIBODY VARIATION
    BRENNER, S
    MILSTEIN, C
    [J]. NATURE, 1966, 211 (5046) : 242 - &
  • [8] IT WAS A VERY GOOD YEAR FOR DNA-REPAIR
    CLEAVER, JE
    [J]. CELL, 1994, 76 (01) : 1 - 4
  • [9] ZONAL DISTRIBUTION OF IMMUNOGLOBULIN-SYNTHESIZING CELLS WITHIN THE GERMINAL CENTER - AN INSITU HYBRIDIZATION AND IMMUNOHISTOCHEMICAL STUDY
    CLOSE, PM
    PRINGLE, JH
    RUPRAI, AK
    WEST, KP
    LAUDER, I
    [J]. JOURNAL OF PATHOLOGY, 1990, 162 (03) : 209 - 216
  • [10] DEBOER J, 1998, IN PRESS MOL CELL