Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa

被引:109
作者
Van Alst, Nadine E. [1 ]
Picardo, Kristin F. [1 ]
Iglewski, Barbara H. [1 ]
Haidaris, Constantine G. [1 ]
机构
[1] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA
关键词
D O I
10.1128/IAI.00201-07
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Infection by the bacterial opportunist Pseudomonas aeruginosa frequently assumes the form of a biofilm, requiring motility for biofilm formation and dispersal and an ability to grow in nutrient- and oxygen-limited environments. Anaerobic growth by P. aeruginosa is accomplished through the denitrification enzyme pathway that catalyzes the sequential reduction of nitrate to nitrogen gas. Mutants mutated in the two-component nitrate sensor-response regulator and in membrane nitrate reductase displayed altered motility and biofilm formation compared to Mid-type P. aeruginosa PAO1 Analysis of additional nitrate dissimilation mutants demonstrated a second level of regulation in P. aeruginosa motility that is independent of nitrate sensor-response regulator function and is associated with nitric oxide production. Because motility and biofilm formation are important for P. aeruginosa pathogenicity, we examined the virulence of selected regulatory and structural gene mutants in the surrogate model host Caenorhabditis elegans. Interestingly, the membrane nitrate reductase mutant was avirulent in C elegans, while nitrate sensor-response regulator mutants were fully virulent. The data demonstrate that nitrate sensing, response regulation, and metabolism are linked directly to factors important in P. aeruginosa pathogenesis.
引用
收藏
页码:3780 / 3790
页数:11
相关论文
共 68 条
[1]   Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model [J].
Alegado, RA ;
Campbell, MC ;
Chen, WC ;
Slutz, SS ;
Tan, MW .
CELLULAR MICROBIOLOGY, 2003, 5 (07) :435-444
[2]   Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa [J].
Arai, H ;
Hayashi, M ;
Kuroi, A ;
Ishii, M ;
Igarashi, Y .
JOURNAL OF BACTERIOLOGY, 2005, 187 (12) :3960-3968
[3]   Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa [J].
Barraud, Nicolas ;
Hassett, Daniel J. ;
Hwang, Sung-Hei ;
Rice, Scott A. ;
Kjelleberg, Staffan ;
Webb, Jeremy S. .
JOURNAL OF BACTERIOLOGY, 2006, 188 (21) :7344-7353
[4]   Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions [J].
Berks, BC ;
Ferguson, SJ ;
Moir, JWB ;
Richardson, DJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1232 (03) :97-173
[5]   Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms [J].
Boles, BR ;
Thoendel, M ;
Singh, PK .
MOLECULAR MICROBIOLOGY, 2005, 57 (05) :1210-1223
[6]  
BRENNER S, 1974, GENETICS, V77, P71
[7]   SYNTHESIS OF MULTIPLE EXOPRODUCTS IN PSEUDOMONAS-AERUGINOSA IS UNDER THE CONTROL OF RHLR-RHLI, ANOTHER SET OF REGULATORS IN STRAIN PAO1 WITH HOMOLOGY TO THE AUTOINDUCER-RESPONSIVE LUXR-LUXI FAMILY [J].
BRINT, JM ;
OHMAN, DE .
JOURNAL OF BACTERIOLOGY, 1995, 177 (24) :7155-7163
[8]   Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa [J].
Caiazza, NC ;
Shanks, RMQ ;
O'Toole, GA .
JOURNAL OF BACTERIOLOGY, 2005, 187 (21) :7351-7361
[9]   Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization [J].
Carvajal, MMC ;
Wijfjes, AHM ;
Mulders, IHM ;
Lugtenberg, BJJ ;
Bloemberg, GV .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (07) :662-671
[10]   A Tn7-based broad-range bacterial cloning and expression system [J].
Choi, KH ;
Gaynor, JB ;
White, KG ;
Lopez, C ;
Bosio, CM ;
Karkhoff-Schweizer, RR ;
Schweizer, HP .
NATURE METHODS, 2005, 2 (06) :443-448