Explicit solutions of the eigenvalue problem -div(Du/|Du|) = u in R2

被引:39
作者
Bellettini, G
Caselles, V
Novaga, M
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Pompeu Fabra, Dept Tecnol, Barcelona 08003, Spain
[3] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
eigenvalue problem; total variation flow; finite perimeter sets; denoising problem;
D O I
10.1137/S0036141003430007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we compute explicit solutions of the eigenvalue problem - div(Du/vertical bar Du vertical bar) = u in R-2, in particular explicit solutions whose truncatures are in W-loc(1,1) (R-2), and piecewise constant ones which are sums of characteristic functions of convex sets. The solutions of the above eigenvalue problem describe the asymptotic behavior of solutions of the minimizing total variation flow. As an application, we also construct explicit solutions of the denoising problem in image processing.
引用
收藏
页码:1095 / 1129
页数:35
相关论文
共 36 条
[1]  
ALTER F, 2003, CHARACTERIZATION CON
[2]  
ALTER F, IN PRESS INTERFACES
[3]   The size of objects in natural and artificial images [J].
Alvarez, L ;
Gousseau, Y ;
Morel, JM .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 111, 1999, 111 :167-242
[4]  
Ambrosio L., 2000, FUNCTIONS BOUNDED VA
[5]  
Ambrosio L., 2001, EUR J MATH, V3, P39
[6]  
Ambrosio L., 1998, RIC MAT, V48, P167
[7]  
Ambrosio L., 1997, CORSO INTRO TEORIA G
[8]   Some qualitative properties for the total variation flow [J].
Andreu, F ;
Caselles, V ;
Diaz, JI ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :516-547
[9]  
Andreu F., 2004, PROGR MATH, V223
[10]  
Andreu F, 2001, DIFFERENTIAL INTEGRA, V14, P321