Geometry and symmetry of multilattices

被引:16
作者
Pitteri, M [1 ]
机构
[1] Univ Padua, Dipartimento Metodi & Modelli Matemat Sci Applica, I-35131 Padua, Italy
关键词
multilattices; lattice symmetry; arithmetic equivalence; crystallographic groups;
D O I
10.1016/S0749-6419(97)00045-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We extend to multilattices some of Ericksen's ideas about invariance of continuum constitutive equations for a solid that can be regarded as a simple crystalline lattice from the molecular point of view. In particular we analyze properties of lattice groups of multilattices and of their fixed sets, and prove that a natural classification of such groups provides a finer description of symmetry than the classes of space groups of classical crystallography. We also provide a simple criterion to see whether or not the descriptors of a multilattice correspond to its maximal translational invariance. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:139 / 157
页数:19
相关论文
共 24 条
[2]  
BURCKHARDT JJ, 1947, BEWEGUNGSGRUPPE KRIS
[3]  
Engel P., 1986, Geometric Crystallography: An Axiomatic Introduction to Crystallography
[4]  
ERICKSEN JL, 1979, ARCH RATION MECH AN, V72, P1, DOI 10.1007/BF00250733
[5]  
ERICKSEN JL, 1987, METASTABILITY INCOMP, V3
[6]   CRYSTALLOGRAPHIC GROUPS AND THEIR MATHEMATICS [J].
FARKAS, DR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1981, 11 (04) :511-551
[7]  
JAMES RD, 1987, METASTABILITY INCOMP, V3
[8]  
Janssen T., 1973, Crystallographic Groups
[9]   SPACE-GROUPS AND THEIR ISOTROPY SUBGROUPS [J].
JARIC, MV ;
SENECHAL, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (11) :3148-3154
[10]  
MCLANE S, 1967, ALGEBRA