Constraints on global fire activity vary across a resource gradient

被引:351
作者
Krawchuk, Meg A. [1 ]
Moritz, Max A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
circulation anomalies; climate; constraints on wildfire; energy and moisture gradients; global pyrogeography; resources and conditions; soil moisture; Spearman rank correlation; zero-inflated negative binomial regression; FOREST-FIRES; NOAA-AVHRR; CLIMATE; WILDFIRE; PATTERNS; LANDSCAPE; WEATHER; AREA; DETERMINANTS; VARIABILITY;
D O I
10.1890/09-1843.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We provide an empirical, global test of the varying constraints hypothesis, which predicts systematic heterogeneity in the relative importance of biomass resources to burn and atmospheric conditions suitable to burning (weather/climate) across a spatial gradient of long-term resource availability. Analyses were based on relationships between monthly global wildfire activity, soil moisture, and mid-tropospheric circulation data from 2001 to 2007, synthesized across a gradient of long-term averages in resources (net primary productivity), annual temperature, and terrestrial biome. We demonstrate support for the varying constraints hypothesis, showing that, while key biophysical factors must coincide for wildfires to occur, the relative influence of resources to burn and moisture/weather conditions on fire activity shows predictable spatial patterns. In areas where resources are always available for burning during the fire season, such as subtropical/tropical biomes with mid-high annual long-term net primary productivity, fuel moisture conditions exert their strongest constraint on fire activity. In areas where resources are more limiting or variable, such as deserts, xeric shrublands, or grasslands/savannas, fuel moisture has a diminished constraint on wildfire, and metrics indicating availability of burnable fuels produced during the antecedent wet growing seasons reflect a more pronounced constraint on wildfire. This macro-scaled evidence for spatially varying constraints provides a synthesis with studies performed at local and regional scales, enhances our understanding of fire as a global process, and indicates how sensitivity to future changes in temperature and precipitation may differ across the world.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 63 条
[1]  
[Anonymous], 1987, DEV STRUCTURE CANADI
[2]   What limits fire? An examination of drivers of burnt area in Southern Africa [J].
Archibald, Sally ;
Roy, David P. ;
van Wilgen, Brian W. ;
Scholes, Robert J. .
GLOBAL CHANGE BIOLOGY, 2009, 15 (03) :613-630
[3]   Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management [J].
Arienti, M. Cecilia ;
Cumming, Steven G. ;
Boutin, Stan .
CANADIAN JOURNAL OF FOREST RESEARCH, 2006, 36 (12) :3155-3166
[4]   THE RELATIVE IMPORTANCE OF FUELS AND WEATHER ON FIRE BEHAVIOR IN SUB-ALPINE FORESTS [J].
BESSIE, WC ;
JOHNSON, EA .
ECOLOGY, 1995, 76 (03) :747-762
[5]   The global distribution of ecosystems in a world without fire [J].
Bond, WJ ;
Woodward, FI ;
Midgley, GF .
NEW PHYTOLOGIST, 2005, 165 (02) :525-537
[6]   Fire in the Earth System [J].
Bowman, David M. J. S. ;
Balch, Jennifer K. ;
Artaxo, Paulo ;
Bond, William J. ;
Carlson, Jean M. ;
Cochrane, Mark A. ;
D'Antonio, Carla M. ;
DeFries, Ruth S. ;
Doyle, John C. ;
Harrison, Sandy P. ;
Johnston, Fay H. ;
Keeley, Jon E. ;
Krawchuk, Meg A. ;
Kull, Christian A. ;
Marston, J. Brad ;
Moritz, Max A. ;
Prentice, I. Colin ;
Roos, Christopher I. ;
Scott, Andrew C. ;
Swetnam, Thomas W. ;
van der Werf, Guido R. ;
Pyne, Stephen J. .
SCIENCE, 2009, 324 (5926) :481-484
[7]  
Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000
[8]   Global frequency and distribution of lightning as observed from space by the Optical Transient Detector [J].
Christian, HJ ;
Blakeslee, RJ ;
Boccippio, DJ ;
Boeck, WL ;
Buechler, DE ;
Driscoll, KT ;
Goodman, SJ ;
Hall, JM ;
Koshak, WJ ;
Mach, DM ;
Stewart, MF .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D1)
[9]   Global characterization of fire activity: toward defining fire regimes from Earth observation data [J].
Chuvieco, Emilio ;
Giglio, Louis ;
Justice, Chris .
GLOBAL CHANGE BIOLOGY, 2008, 14 (07) :1488-1502
[10]   Fire science for rainforests [J].
Cochrane, MA .
NATURE, 2003, 421 (6926) :913-919