Mean-field solutions of kinetic-exchange opinion models

被引:40
作者
Biswas, Soumyajyoti [1 ]
机构
[1] Saha Inst Nucl Phys, Theoret Condensed Matter Phys Div, Kolkata 700064, W Bengal, India
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 05期
关键词
PHASE-TRANSITIONS; STATISTICAL-MECHANICS; CELLULAR-AUTOMATA; SOCIOPHYSICS; BEHAVIOR;
D O I
10.1103/PhysRevE.84.056106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present here the exact solution of an infinite range, discrete, opinion formation model. The model shows an active-absorbing phase transition, similar to that numerically found in its recently proposed continuous version [Lallouache et al., Phys. Rev. E 82, 056112 (2010)]. Apart from the two-agent interactions here we also report the effect of having three-agent interactions. The phase diagram has a continuous transition line (two-agent interaction dominated) and a discontinuous transition line (three-agent interaction dominated) separated by a tricritical point.
引用
收藏
页数:9
相关论文
共 36 条
[1]  
[Anonymous], 2006, Econophysics and Sociophysics: Trends and Perspectives
[2]   Tricritical Point in Explosive Percolation [J].
Araujo, Nuno A. M. ;
Andrade, Jose S., Jr. ;
Ziff, Robert M. ;
Herrmann, Hans J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[3]   Nature of phase transitions in a probabilistic cellular automaton with two absorbing states [J].
Bagnoli, F ;
Boccara, N ;
Rechtman, R .
PHYSICAL REVIEW E, 2001, 63 (04) :461161-461169
[4]  
Biswas S., ARXIV11020902
[5]   Model of binary opinion dynamics: Coarsening and effect of disorder [J].
Biswas, Soham ;
Sen, Parongama .
PHYSICAL REVIEW E, 2009, 80 (02)
[6]   Phase transitions and non-equilibrium relaxation in kinetic models of opinion formation [J].
Biswas, Soumyajyoti ;
Chandra, Anjan Kumar ;
Chatterjee, Arnab ;
Chakrabarti, Bikas K. .
STATPHYS-KOLKATA VII, 2011, 297
[7]   Statistical physics of social dynamics [J].
Castellano, Claudio ;
Fortunato, Santo ;
Loreto, Vittorio .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :591-646
[8]   An almost linear stochastic map related to the particle system models of social sciences [J].
Chakrabarti, Anindya S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (23-24) :4370-4378
[9]   Statistical mechanics of money: how saving propensity affects its distribution [J].
Chakraborti, A ;
Chakrabarti, BK .
EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (01) :167-170
[10]  
Chakraborti A, 2011, NEW ECON WINDOWS, P289