Identification of faulty sensors using principal component analysis

被引:395
作者
Dunia, R
Qin, SJ
Edgar, TF
McAvoy, TJ
机构
[1] UNIV TEXAS,DEPT CHEM ENGN,AUSTIN,TX 78712
[2] FISHER ROSEMOUNT SYST,AUSTIN,TX 78754
[3] UNIV MARYLAND,DEPT CHEM ENGN,COLLEGE PK,MD 20742
关键词
D O I
10.1002/aic.690421011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Even though there has been a recent interest in the use of principal component analysis (PCA) for sensor fault detection and identification, few identification schemes for faulty sensors have considered the possibility of an abnormal operating condition of the plant. This article presents the use of PCA for sensor fault identification via reconstruction. The principal component model captures measurement correlations and reconstructs each variable by using iterative substitution and optimization. The transient behavior of a number of sensor faults in various types of residuals is analyzed. A senor validity inner (SVI) is proposed to determine the status of each sensor. On-line implementation of the SVI is examined for different types of sensor faults. The way the index is filtered represents an important tuning parameter for sensor fault identification. Ail example using boiler process data demonstrates attractive features of the SVI.
引用
收藏
页码:2797 / 2812
页数:16
相关论文
共 25 条
  • [1] [Anonymous], 1991, IFAC ADV CONTROLOF C
  • [2] Basilevsky A., 1994, Statistical Factor Analysis and Related Methods: Theory and Applications
  • [4] DA R, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1122
  • [5] DONG D, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P761
  • [6] DONG D, 1994, PROCEEDINGS OF THE 1994 AMERICAN CONTROL CONFERENCE, VOLS 1-3, P1284
  • [7] DUNIA R, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P756
  • [8] FANTONI P, 1994, P IAEA SPEC M ADV IN
  • [9] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [10] GNANADESIKAN R, 1977, METHODS STATISTICAL