Frequency plot and relevance plot to enhance visual data exploration

被引:9
作者
Rodrigues, JF [1 ]
Traina, AJM [1 ]
Traina, C [1 ]
机构
[1] Univ Sao Paulo, Dept Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
来源
XVI BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS | 2003年
关键词
D O I
10.1109/SIBGRA.2003.1240999
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents two techniques aiming at exploring databases through multivariate visualizations. Both techniques intend to deal with the problem caused by the limited amount of elements that can be presented simultaneously in traditional visual exploration procedures. The first technique, the Frequency Plot, combines data frequency with interactive filtering to identify clusters and trends in subsets of the database. Thus, graphical elements (lines, pixels, icons, or graphical marks) are color differentiated proportionally to how frequent the value being represented is, while interactive filtering allows the selection of interesting partitions of the database. The second technique presented in this work, the Relevance Plot, corresponds to assigning different levels of color distinguishably to visual elements according to their relevance to a user's specified data properties set, which can be chosen visually, and dynamically.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 16 条
[1]  
AHLBERG C, 1994, P HUM FACT COMP SYST
[2]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[3]  
BIER E, 1993, SIGGRAPH 93
[4]  
CARD SK, 1999, READINGS INFORMATION
[5]  
FUA YH, 1999, P IEEE VIS 99
[6]  
INSELBERG A, 1990, IEEE VISUALIZATION
[7]  
KANDOGAN E, 2000, IEEE S INF VIS 2000
[8]   Visualization techniques for mining large databases: A comparison [J].
Keim, DA ;
Kriegel, HP .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) :923-938
[9]   Information visualization and visual data mining [J].
Keim, DA .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2002, 8 (01) :1-8
[10]  
KEIM DA, 1994, IEEE COMPUT GRAPH, V14, P16