The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance

被引:401
作者
Goossens, Gijs H. [1 ]
机构
[1] Maastricht Univ, Dept Human Biol, NUTRIM, NL-6200 MD Maastricht, Netherlands
关键词
adipose tissue; obesity; adipocyte size; ectopic fat deposition; adipose tissue blood flow; hypoxia; adipokines; macrophage infiltration; inflammation; insulin resistance;
D O I
10.1016/j.physbeh.2007.10.010
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Research of the past decade has increased our understanding of the role adipose tissue plays in health and disease. Adipose tissue is now recognized as a highly active metabolic and endocrine organ. Adipocytes are of importance in buffering the daily influx of dietary fat and exert autocrine, paracrine and/or endocrine effects by secreting a variety of adipokines. The normal function of adipose tissue is disturbed in obesity, and there is accumulating evidence to suggest that adipose tissue dysfunction plays a prominent role in the development and/or progression of insulin resistance. Obese individuals often have enlarged adipocytes with a reduced buffering capacity for lipid storage, thereby exposing other tissues to an excessive influx of lipids, leading to ectopic fat deposition and insulin resistance in situations where energy intake exceeds energy expenditure. In addition, adipose tissue blood flow is decreased in obesity. This impairment may affect lipid handling in adipose tissue and, thereby, further contribute to excessive fat storage in non-adipose tissues. On the other hand, adipose tissue hypoperfusion may induce hypoxia in this tissue. Adipose tissue hypoxia may result in disturbances in adipokine secretion and increased macrophage infiltration in adipose tissue, events that are frequently observed in obesity. In this review, it is discussed how enlarged adipocytes, an impaired blood flow through adipose tissue, adipose tissue hypoxia, adipose tissue inflammation and macrophage infiltration are interrelated and may induce insulin resistance. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:206 / 218
页数:13
相关论文
共 204 条
[1]   Rasminogen activator inhibitor-1, adipose tissue and insulin resistance [J].
Alessi, Marie-Christine ;
Poggi, Marjorie ;
Juhan-Vague, Irene .
CURRENT OPINION IN LIPIDOLOGY, 2007, 18 (03) :240-245
[2]   Plasminogen activator inhibitor 1, transforming growth factor-β1, and BMI are closely associated in human adipose tissue during morbid obesity [J].
Alessi, MC ;
Bastelica, D ;
Morange, P ;
Berthet, B ;
Leduc, I ;
Verdier, M ;
Geel, O ;
Juhan-Vague, I .
DIABETES, 2000, 49 (08) :1374-1380
[3]   Transcriptional activation of the human leptin gene in response to hypoxia - Involvement of hypoxia-inducible factor 1 [J].
Ambrosini, G ;
Nath, AK ;
Sierra-Honigmann, MR ;
Flores-Riveros, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :34601-34609
[4]   Subcutaneous adipose tissue blood flow varies between superior and inferior levels of the anterior abdominal wall [J].
Ardilouze, JL ;
Karpe, F ;
Currie, JM ;
Frayn, KN ;
Fielding, BA .
INTERNATIONAL JOURNAL OF OBESITY, 2004, 28 (02) :228-233
[5]   Nitric oxide and β-adrenergic stimulation are major regulators of preprandial and postprandial subcutaneous adipose tissue blood flow in humans [J].
Ardilouze, JL ;
Fielding, BA ;
Currie, JM ;
Frayn, KN ;
Karpe, F .
CIRCULATION, 2004, 109 (01) :47-52
[6]   Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity [J].
Arita, Y ;
Kihara, S ;
Ouchi, N ;
Takahashi, M ;
Maeda, K ;
Miyagawa, J ;
Hotta, K ;
Shimomura, I ;
Nakamura, T ;
Miyaoka, K ;
Kuriyama, H ;
Nishida, M ;
Yamashita, S ;
Okubo, K ;
Matsubara, K ;
Muraguchi, M ;
Ohmoto, Y ;
Funahashi, T ;
Matsuzawa, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (01) :79-83
[7]   INFLUENCE OF OBESITY ON THE ANTILIPOLYTIC EFFECT OF INSULIN IN ISOLATED HUMAN FAT-CELLS OBTAINED BEFORE AND AFTER GLUCOSE-INGESTION [J].
ARNER, P ;
BOLINDER, J ;
ENGFELDT, P ;
HELLMER, J ;
OSTMAN, J .
JOURNAL OF CLINICAL INVESTIGATION, 1984, 73 (03) :673-680
[8]   Chemokines and leukocyte traffic [J].
Baggiolini, M .
NATURE, 1998, 392 (6676) :565-568
[9]  
BANERJI MA, 1995, INT J OBESITY, V19, P846
[10]   INSULIN-MEDIATED SKELETAL-MUSCLE VASODILATION CONTRIBUTES TO BOTH INSULIN SENSITIVITY AND RESPONSIVENESS IN LEAN HUMANS [J].
BARON, AD ;
STEINBERG, HO ;
CHAKER, H ;
LEAMING, R ;
JOHNSON, A ;
BRECHTEL, G .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (02) :786-792