Two-layer obstacle collision avoidance with machine learning for more energy-efficient unmanned aircraft trajectories

被引:33
作者
Choi, Youngjun [1 ]
Jimenez, Hernando [1 ]
Mavris, Dimitri N. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Aerosp Syst Design Lab, Atlanta, GA 30332 USA
关键词
Obstacle avoidance; Optimal trajectory; Clustering algorithm; Model predictive control; UAV; Path-planning; SPACECRAFT FORMATIONS; STRATEGIES; SYSTEM; UAV;
D O I
10.1016/j.robot.2017.09.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new two-layer obstacle avoidance algorithm that allows an unmanned aircraft system to avoid multiple obstacles with minimal effort. The algorithm includes a global-path optimization that identifies the number of obstacles resulting from a clustering technique based on obstacle information from an airborne sensor, and specifies a potential threat. A local-path trajectory optimization employs a model predictive control structure based on a multi-phase optimal trajectory resulting from approximated dynamics, vehicle constraints, and the result of the global-path optimization. Numerical flight simulations are conducted with a conventional one-layer obstacle avoidance algorithm and the two-layer obstacle avoidance algorithm. The results of the numerical simulation show that the proposed two-layer optimal obstacle avoidance algorithm generates more energy-efficient avoidance trajectories when an unmanned aircraft meets multiple obstacles. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 173
页数:16
相关论文
共 44 条
  • [1] Anderson M., 2006, AIAA ATM FLIGHT MECH
  • [2] [Anonymous], AIAA GUID NAV CONTR
  • [3] [Anonymous], 1996, KDD
  • [4] Beard R. W., 2012, SMALL UNMANNED AIRCR
  • [5] BENSON D., 2004, THESIS
  • [6] Direct trajectory optimization and costate estimation via an orthogonal collocation method
    Benson, David A.
    Huntington, Geoffrey T.
    Thorvaldsen, Tom P.
    Rao, Anil V.
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (06) : 1435 - 1440
  • [7] Obstacle avoidance in a dynamic environment: A collision cone approach
    Chakravarthy, A
    Ghose, D
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1998, 28 (05): : 562 - 574
  • [8] Statistical gain-scheduling method for aircraft flight simulation
    Choi, Youngjun
    Jimenez, Hernando
    Mavris, Dimitri N.
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 46 : 493 - 505
  • [9] On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System
    Dalamagkidis, K.
    Valavanis, K. P.
    Piegl, L. A.
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2008, 44 (7-8) : 503 - 519
  • [10] Path Planning Strategies for UAVS in 3D Environments
    De Filippis, Luca
    Guglieri, Giorgio
    Quagliotti, Fulvia
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 65 (1-4) : 247 - 264