Factors affecting rainfall interception determined by a forest simulator and numerical model

被引:27
作者
Toba, T. [1 ]
Ohta, T. [2 ,3 ]
机构
[1] Nagoya Univ, Hydrospher Atmospher Res Ctr, Nagoya, Aichi 4648601, Japan
[2] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan
[3] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
关键词
interception loss; artificial forest; PAI; rainfall intensity; wind speed; saturation deficit;
D O I
10.1002/hyp.6859
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
To elucidate the factors involved in interception loss, we conducted experiments in which we measured environmental variables such as rainfall intensity, forest structure, and weather conditions. An artificial forest consisting of 24 vinyl trees was used to examine the influences of forest structure and rainfall conditions on interception loss. The interception rate was higher at higher plant area index (PAI) values and wind speeds and lower with greater rainfall intensity. We confirmed the factors affecting interception loss by using an interception model based on the tank model. The artificial forest simulations provide new evidence that interception loss is influenced by the PAI, rainfall intensity, saturation deficit, and wind speed. The effect of the saturation deficit on the interception rate was unclear from the experimental results, but the single-tank model revealed that wind speed strongly influences the effects of the saturation deficit on interception loss. Thus, whereas interception loss was not significantly affected by the saturation deficit at low wind speeds, it increased significantly with the saturation deficit under windy conditions. The model simulation also showed the sensitivity of each factor with regard to the interception rate. The sensitivity of rainfall intensity decreased as the PAI increased, and the sensitivity of the saturation deficit increased as the wind speed increased. The experiments and model calculations clarified the main elements affecting interception loss and their sensitivities. Compared with previous studies on interception loss, this study revealed a positive relationship between the PAI and interception loss, a negative exponential relationship with rainfall intensity, and the effects of the saturation deficit on interception loss. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:2634 / 2643
页数:10
相关论文
共 31 条
[1]   Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia [J].
Asdak, C ;
Jarvis, PG ;
van Gardingen, P ;
Fraser, A .
JOURNAL OF HYDROLOGY, 1998, 206 (3-4) :237-244
[2]  
Crockford RH, 2000, HYDROL PROCESS, V14, P2903, DOI [10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO
[3]  
2-6, 10.1002/1099-1085(200011/12)14:16/17&lt
[4]  
2903::AID-HYP126&gt
[5]  
3.0.CO
[6]  
2-6]
[7]  
Dunkerley D, 2000, HYDROL PROCESS, V14, P669, DOI 10.1002/(SICI)1099-1085(200003)14:4&lt
[8]  
669::AID-HYP965&gt
[9]  
3.0.CO
[10]  
2-I