Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell

被引:156
作者
Huang, Sheng-Yang [1 ]
Ganesan, Prabhu [1 ]
Popov, Branko N. [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Ctr Electrochem Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Titania; Cathode catalyst support; Corrosion resistance; Oxygen reduction reaction; Proton exchange membrane fuel cell; RUTHENIUM CATALYST; SURFACE SCIENCE; REDUCTION; OXIDATION; DIOXIDE; AREA; PROMOTION; CORROSION; HYDROGEN; OXIDES;
D O I
10.1016/j.apcatb.2010.11.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titania supported Pt electrocatalysts (Pt/TiO2) were synthesized and investigated as alternative cathode catalysts for polymer electrolyte membrane fuel cells (PEMFCs). Transmission electron microscope (TEM) images revealed uniform distribution of Pt nanoparticles (d(Pt) = 3-5 nm) on the TiO2 support. The Pt/TiO2 electrocatalyst showed comparable activity to that of a commercial Pt/C catalyst (TKK) in fuel cell studies. The fuel cell accelerated stress test (AST) for catalysts demonstrated similar stability for Pt/TiO2 and Pt/C. In-house developed accelerated durability test (ADT, continuous potential cycling between 0.6 and 1.4 V) in half-cell condition indicated nearly ten-fold higher ORR activity (1.20 mA cm(-2)) when compared to the Pt/C catalyst (0.13 mA cm(-2)). The Pt/C catalyst showed no activity in fuel cell testing after 2000 potential cycles due to severe carbon corrosion. Pt dissolution, and catalyst particle sintering. Conversely, the Pt/TiO2 electrocatalyst showed only a small voltage loss (0.09 V at 0.8 A cm(-2)) even after 4000 cycles. Furthermore, the ADT results showed excellent stability for the Pt/TiO2 electrocatalysts at high potentials in terms of minimum loss in the Pt electrochemical surface area (ECSA). The high stability of the Pt/TiO2 electrocatalyst synthesized in this investigation offers a new approach to improve the reliability and durability of PEM-based fuel cell cathode catalysts. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 34 条
  • [1] Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity
    Bauer, Alex
    Lee, Kunchan
    Song, Chaojie
    Xie, Yongsong
    Zhang, Jiujun
    Hui, Rob
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (10) : 3105 - 3110
  • [2] Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems
    Chalk, Steven G.
    Miller, James E.
    [J]. JOURNAL OF POWER SOURCES, 2006, 159 (01) : 73 - 80
  • [3] Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications
    Chen, Xiaobo
    Mao, Samuel S.
    [J]. CHEMICAL REVIEWS, 2007, 107 (07) : 2891 - 2959
  • [4] Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions
    Chen, Zhongwei
    Waje, Mahesh
    Li, Wenzhen
    Yan, Yushan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) : 4060 - 4063
  • [5] An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells
    Chhina, H.
    Campbell, S.
    Kesler, O.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (02) : 893 - 900
  • [6] Stability of platinum based alloy cathode catalysts in PEM fuel cells
    Colón-Mercado, HR
    Popov, BN
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 253 - 263
  • [7] High voltage stability of nanostructured thin film catalysts for PEM fuel cells
    Debe, Mark K.
    Schmoeckel, Alison K.
    Vernstrorn, George D.
    Atanasoski, Radoslav
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (02) : 1002 - 1011
  • [8] The surface science of titanium dioxide
    Diebold, U
    [J]. SURFACE SCIENCE REPORTS, 2003, 48 (5-8) : 53 - 229
  • [9] Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells - A mechanistic investigation
    Ferreira, PJ
    la O', GJ
    Shao-Horn, Y
    Morgan, D
    Makharia, R
    Kocha, S
    Gasteiger, HA
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) : A2256 - A2271
  • [10] Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
    Gasteiger, HA
    Kocha, SS
    Sompalli, B
    Wagner, FT
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) : 9 - 35