The structure and function of eukaryotic photosystem I

被引:113
作者
Busch, Andreas [2 ]
Hippler, Michael [1 ]
机构
[1] Univ Munster, Inst Plant Biochem & Biotechnol, D-48143 Munster, Germany
[2] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2011年 / 1807卷 / 08期
关键词
Photosystem I; Light harvesting; LHCI; Red algae; Green algae; Plastocyanin; Ferredoxin; Electron transfer; LIGHT-HARVESTING-COMPLEX; DIATOM PHAEODACTYLUM-TRICORNUTUM; CYCLIC ELECTRON FLOW; FUCOXANTHIN-CHLOROPHYLL-PROTEINS; ALGA CHLAMYDOMONAS-REINHARDTII; SYNECHOCYSTIS SP PCC-6803; CYCLOTELLA-CRYPTICA BACILLARIOPHYCEAE; FLASH ABSORPTION-SPECTROSCOPY; PIGMENT-PIGMENT INTERACTIONS; SITE-DIRECTED MUTAGENESIS;
D O I
10.1016/j.bbabio.2010.09.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:864 / 877
页数:14
相关论文
共 237 条
[1]   Antenna complexes protect Photosystem I from Photoinhibition [J].
Alboresi, Alessandro ;
Ballottari, Matteo ;
Hienerwadel, Rainer ;
Giacometti, Giorgio M. ;
Morosinotto, Tomas .
BMC PLANT BIOLOGY, 2009, 9
[2]   In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation [J].
Alboresi, Alessandro ;
Caffarri, Stefano ;
Nogue, Fabien ;
Bassi, Roberto ;
Morosinotto, Tomas .
PLOS ONE, 2008, 3 (04)
[3]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[4]   Cyclic electron flow around photosystem I in unicellular green algae [J].
Alric, Jean .
PHOTOSYNTHESIS RESEARCH, 2010, 106 (1-2) :47-56
[5]   Functional organization of a plant photosystem I: Evolution of a highly efficient photochemical machine [J].
Amunts, Alexey ;
Nelson, Nathan .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :228-237
[6]   The structure of a plant photosystem I supercomplex at 3.4 Å resolution [J].
Amunts, Alexey ;
Drory, Omri ;
Nelson, Nathan .
NATURE, 2007, 447 (7140) :58-63
[7]   Structure Determination and Improved Model of Plant Photosystem I [J].
Amunts, Alexey ;
Toporik, Hila ;
Borovikova, Anna ;
Nelson, Nathan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (05) :3478-3486
[8]   Plant Photosystem I Design in the Light of Evolution [J].
Amunts, Alexey ;
Nelson, Nathan .
STRUCTURE, 2009, 17 (05) :637-650
[9]   The Puzzle of Plastid Evolution [J].
Archibald, John M. .
CURRENT BIOLOGY, 2009, 19 (02) :R81-R88
[10]  
ARNON DI, 1959, NATURE, V184, P10