Determinants of rapamycin sensitivity in breast cancer cells

被引:250
作者
Noh, WC
Mondesire, WH
Peng, JY
Jian, WG
Zhang, HX
Dong, JJ
Mills, GB
Hung, MC
Meric-Bernstam, F
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX 77030 USA
[2] Univ Texas, MD Anderson Canc Ctr, Dept Mol Therapeut, Houston, TX 77030 USA
[3] Univ Texas, MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA
[4] Korea Canc Ctr Hosp, Seoul, South Korea
关键词
D O I
10.1158/1078-0432.CCR-03-0043
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Rapamycin inhibits the serine-threonine kinase mammalian target of rapamycin (mTOR), blocking phosphorylation of p70 S6 kinase (S6K1) and 4E-binding protein 1 (4E-BP1) and inhibiting protein translation and cell cycle progression. Rapamycin and its analogues are currently being tested in clinical trials as novel-targeted anticancer agents. Although rapamycin analogues show activity in clinical trials, only some of the treated patients respond. The purpose of this study is to identify determinants of rapamycin sensitivity that may assist the selection of appropriate patients for therapy. Experimental Design: Breast cancer cell lines representing a spectrum of aberrations in the mTOR signaling pathway were tested for rapamycin sensitivity. The expression and phosphorylation state of multiple components of the pathway were tested by Western blot analysis, in the presence and absence of rapamycin. Results: Cell proliferation was significantly inhibited in response to rapamycin in 12 of 15 breast cancer cell lines. The ratio of total protein levels of 4E-BP1 to its binding partner eukaryotic initiation factor 4E did not predict rapamycin sensitivity. In contrast, overexpression of S6K1, and phosphorylated Akt independent of phosphatase and tensin homologue deleted from chromosome 10 status, were associated with rapamycin sensitivity. Targeting S6K1 and Akt with small interfering RNA and dominant-negative constructs, respectively, decreased rapamycin sensitivity. Rapamycin inhibited the phosphorylation of S6K1, ribosomal S6 protein, and 4E-BP1 in rapamycin-resistant as well as -sensitive cells, indicating that its ability to inhibit the mTOR pathway is not sufficient to confer sensitivity to rapamycin. In contrast, rapamycin treatment was associated with decreased cyclin D1 levels in the rapamycin-sensitive cells but not in rapamycin-resistant cells. Conclusions: Overexpression of S6K1 and expression of phosphorylated Akt should be evaluated as predictors of rapamycin sensitivity in breast cancer patients. Furthermore, changes in cyclin D1 levels provide a potential pharmacodynamic marker of response to rapamycin.
引用
收藏
页码:1013 / 1023
页数:11
相关论文
共 47 条
[1]  
Bärlund M, 2000, CANCER RES, V60, P5340
[2]   Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis [J].
Bärlund, M ;
Forozan, F ;
Kononen, J ;
Bubendorf, L ;
Chen, YD ;
Bittner, ML ;
Torhorst, J ;
Haas, P ;
Bucher, C ;
Sauter, G ;
Kallioniemi, OP ;
Kallioniemi, A .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (15) :1252-1259
[3]  
Boulay Anne, 2002, Proceedings of the American Association for Cancer Research Annual Meeting, V43, P602
[4]  
CHAN S, 2003, P AN M AM SOC CLIN, V22, P193
[5]   Phospholipase D confers rapamycin resistance in human breast cancer cells [J].
Chen, YH ;
Zheng, Y ;
Foster, DA .
ONCOGENE, 2003, 22 (25) :3937-3942
[6]   Translational control: the cancer connection [J].
Clemens, MJ ;
Bommer, UA .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (01) :1-23
[7]   eIF4E expression in tumors: its possible role in progression of malignancies [J].
De Benedetti, A ;
Harris, AL .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (01) :59-72
[8]   4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin [J].
Dilling, MB ;
Germain, GS ;
Dudkin, L ;
Jayaraman, AL ;
Zhang, XW ;
Harwood, FC ;
Houghton, PJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (16) :13907-13917
[9]  
Dudkin L, 2001, CLIN CANCER RES, V7, P1758
[10]  
Dufner A, 1999, MOL CELL BIOL, V19, P4525