Molecular distinction between arteries and veins

被引:85
作者
Torres-Vaázquez, J [1 ]
Kamei, M [1 ]
Weinstein, BM [1 ]
机构
[1] NICHD, Genet Mol Lab, NIH, Bethesda, MD 20892 USA
关键词
blood vessels; arteries; veins; ephrins; Notch; vascular endothelial growth factor;
D O I
10.1007/s00441-003-0771-8
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The vertebrate vascular system is essential for the delivery and exchange of gases, hormones, metabolic wastes and immunity factors. These essential functions are carried out in large part by two types of anatomically distinct blood vessels, namely arteries and veins. Previously, circulatory dynamics were thought to play a major role in establishing this dichotomy, but recently it has become clear that arterial and venous endothelial cells are molecularly distinct even before the output of the first embryonic heartbeat, thus revealing the existence of genetic programs coordinating arterial-venous differentiation. Here we review some of the molecular mechanisms involved in this process.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 129 条
[1]   Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk [J].
Abtahian, F ;
Guerriero, A ;
Sebzda, E ;
Lu, MM ;
Zhou, R ;
Mocsai, A ;
Myers, EE ;
Huang, B ;
Jackson, DG ;
Ferrari, VA ;
Tybulewicz, V ;
Lowell, CA ;
Lepore, JJ ;
Koretzky, GA ;
Kahn, ML .
SCIENCE, 2003, 299 (5604) :247-251
[2]   A comparison of aorta and vena cava medial message expression by cDNA array analysis identities a set of 68 consistently differentially expressed genes, all in aortic media [J].
Adams, LD ;
Geary, RL ;
McManus, B ;
Schwartz, SM .
CIRCULATION RESEARCH, 2000, 87 (07) :623-631
[3]   The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration [J].
Adams, RH ;
Diella, F ;
Hennig, S ;
Helmbacher, F ;
Deutsch, U ;
Klein, R .
CELL, 2001, 104 (01) :57-69
[4]   Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis [J].
Adams, RH ;
Wilkinson, GA ;
Weiss, C ;
Diella, F ;
Gale, NW ;
Deutsch, U ;
Risau, W ;
Klein, R .
GENES & DEVELOPMENT, 1999, 13 (03) :295-306
[5]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[6]   Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse [J].
Barrantes, ID ;
Elia, AJ ;
Wünsch, K ;
De Angelis, MH ;
Mak, TW ;
Rossant, J ;
Conlon, RA ;
Gossler, A ;
de la Pompa, JL .
CURRENT BIOLOGY, 1999, 9 (09) :470-480
[7]   Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1 [J].
Bates, D ;
Taylor, GI ;
Minichiello, J ;
Farlie, P ;
Cichowitz, A ;
Watson, N ;
Klagsbrun, M ;
Mamluk, R ;
Newgreen, DF .
DEVELOPMENTAL BIOLOGY, 2003, 255 (01) :77-98
[8]  
Beatus P, 1998, J NEUROSCI RES, V54, P125, DOI 10.1002/(SICI)1097-4547(19981015)54:2<125::AID-JNR1>3.0.CO
[9]  
2-G
[10]  
Beatus P, 1999, DEVELOPMENT, V126, P3925