Raspberry-like polymer/silica core-corona composite by self-assemble heterocoagulation based on a hydrogen-bonding interaction

被引:37
作者
Wang, Junyou [1 ]
Yang, Xinlin [1 ]
机构
[1] Nankai Univ, Inst Polymer Chem, Minist Educ, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
self-assemble heterocoagulation; organic-inorganic composite; hydrogen-bonding interaction;
D O I
10.1007/s00396-007-1767-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Raspberry-like poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine)/silica (poly(EGDMA-co-VPy)/SiO2) core-corona composite was prepared by a self-assemble heterocoagulation based on a hydrogen-bonding interaction between the pyridyl group of poly(EGDMA-co-VPy) core and the active hydroxyl group of silica corona. The raspberry-like composite was stable near the neutral environment with pH ranging from 5.0 to 8.0. The effects of the solvent and the mass ratio of silica to polymer microsphere on the coverage of the silica corona on poly(EGDMA-co-VPy) core were investigated in detail. The resultant core-corona heterocoagulates were characterized with scanning electron microscope and the nature of the interaction between the polymer core particle and silica corona particle was identified as hydrogen bonding with Fourier Transform Infrared spectroscopy.
引用
收藏
页码:283 / 291
页数:9
相关论文
共 47 条
[1]   Characterization of vinyl polymer/silica colloidal nanocomposites using solid state NMR spectroscopy: Probing the interaction between the inorganic and organic phases on the molecular level [J].
Agarwal, GK ;
Titman, JJ ;
Percy, MJ ;
Armes, SP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (45) :12497-12502
[2]   Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation-precipitation polymerization [J].
Bai, F ;
Yang, XL ;
Huang, WQ .
MACROMOLECULES, 2004, 37 (26) :9746-9752
[3]  
Barthet C, 1999, ADV MATER, V11, P408, DOI 10.1002/(SICI)1521-4095(199903)11:5<408::AID-ADMA408>3.3.CO
[4]  
2-P
[5]   Self-assembly of supramolecules consisting of octyl gallate hydrogen bonded to polyisoprene-block-poly(vinylpyridine) diblock copolymers [J].
Bondzic, S ;
de Wit, J ;
Polushkin, E ;
Schouten, AJ ;
ten Brinke, G ;
Ruokolainen, J ;
Ikkala, O ;
Dolbnya, I ;
Bras, W .
MACROMOLECULES, 2004, 37 (25) :9517-9524
[6]   Encapsulation of inorganic particles by dispersion polymerization in polar media 2. Effect of silica size and concentration on the morphology of silica-polystyrene composite particles [J].
Bourgeat-Lami, E ;
Lang, J .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 210 (02) :281-289
[7]   Encapsulation of inorganic particles by dispersion polymerization in polar media - 1. Silica nanoparticles encapsulated by polystyrene [J].
Bourgeat-Lami, E ;
Lang, J .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1998, 197 (02) :293-308
[8]  
Brandrup J., 1999, POLYM HDB, V2
[9]   Production of hollow microspheres from nanostructured composite particles [J].
Caruso, F ;
Caruso, RA ;
Möhwald, H .
CHEMISTRY OF MATERIALS, 1999, 11 (11) :3309-3314
[10]   Electrostatic self-assembly of silica nanoparticle -: Polyelectrolyte multilayers on polystyrene latex particles [J].
Caruso, F ;
Lichtenfeld, H ;
Giersig, M ;
Möhwald, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (33) :8523-8524