Interaction of imatinib with human organic ion carriers

被引:190
作者
Hu, Shuiying [1 ]
Franke, Ryan M. [1 ]
Filipski, Kelly K. [1 ,2 ]
Hu, Chaoxin [1 ]
Orwick, Shelley J. [1 ]
de Bruijn, Ernst A. [3 ]
Burger, Herman [4 ]
Baker, Sharyn D. [1 ]
Sparreboom, Alex [1 ,2 ]
机构
[1] St Jude Childrens Res Hosp, Dept Pharmaceut Sci, Memphis, TN 38105 USA
[2] Univ Tennessee, Ctr Hlth Sci, Memphis, TN 38163 USA
[3] Catholic Univ Louvain, UZ Gasthuisberg, Dept Clin Oncol, B-3000 Louvain, Belgium
[4] Erasmus MC, Dept Med Oncol, Rotterdam, Netherlands
关键词
D O I
10.1158/1078-0432.CCR-07-4913
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: The activity of imatinib in leukemia has recently been linked with expression of the organic cation transporter 1 (OCT1) gene SLC22A1. Here, we characterized the contribution of solute carriers to imatinib transport in an effort to further understand mechanisms involved in the intracellular uptake and retention (IUR) of the drug. Experimental Design: IUR of [3 H] imatinib was studied in Xenopus laevis oocytes and HEK293 cells expressing OATP1A2, OATP1B1, OATP1B3, OCT1-3, OCTN1-2, or OAT1-3. Gene expression was determined in nine leukemia cell lines using the Affymetrix U133 array. Results: Imatinib was not found to be a substrate for OCT1 in oocytes (P = 0.21), whereas in HEK293 cells IUR was increased by only 1.20-fold relative to control cells (P = 0.002). Furthermore, in 74 cancer patients, the oral clearance of imatinib was not significantly altered in individuals carrying reduced-function variants in SLC22A1 (P = 0.99). Microarray analysis indicated that SLC22A1 was interrelated with gene expression of various transporters, including ABCB1, ABCC4, ABCG2 (negative), and OATP1A2 (positive). Imatinib was confirmed to be a substrate for the three efflux transporters (P < 0.05) as well as for OATP1A2 (P = 0.0001). Conclusions: This study suggests that SLC22A1 expression is a composite surrogate for expression of various transporters relevant to imatinib IUR. This observation provides a mechanistic explanation for previous studies that have linked SLC22A1 with the antitumor activity of imatinib. Because of its high expression in the intestine, ciliary body, gliomas, and leukemia cells, OATP1A2 may play a key role in imatinib pharmacokinetics-pharmacodynamics.
引用
收藏
页码:3141 / 3148
页数:8
相关论文
共 45 条
[1]   LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers [J].
Abe, T ;
Unno, M ;
Onogawa, T ;
Tokui, T ;
Kondo, TN ;
Nakagomi, R ;
Adachi, H ;
Fujiwara, K ;
Okabe, M ;
Suzuki, T ;
Nunoki, K ;
Sato, E ;
Kakyo, M ;
Nishio, T ;
Sugita, J ;
Asano, N ;
Tanemoto, M ;
Seki, M ;
Date, F ;
Ono, K ;
Kondo, Y ;
Shiiba, K ;
Suzuki, M ;
Ohtani, H ;
Shimosegawa, T ;
Iinuma, K ;
Nagura, H ;
Ito, S ;
Matsuno, S .
GASTROENTEROLOGY, 2001, 120 (07) :1689-1699
[2]   Unmasking the dynamic interplay between efflux transporters and metabolic enzymes [J].
Benet, LZ ;
Cummins, CL ;
Wu, CY .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2004, 277 (1-2) :3-9
[3]   Genome-wide approach to identify risk factors for therapy-related myeloid leukemia [J].
Bogni, A ;
Cheng, C ;
Liu, W ;
Yang, W ;
Pfeffer, J ;
Mukatira, S ;
French, D ;
Downing, JR ;
Pui, CH ;
Relling, MV .
LEUKEMIA, 2006, 20 (02) :239-246
[4]   ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier [J].
Bronger, H ;
König, J ;
Kopplow, K ;
Steiner, HH ;
Ahmadi, R ;
Herold-Mende, C ;
Keppler, D ;
Nies, AT .
CANCER RESEARCH, 2005, 65 (24) :11419-11428
[5]  
Buchdunger E, 1996, CANCER RES, V56, P100
[6]   Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps [J].
Burger, H ;
van Tol, H ;
Brok, M ;
Wiemer, EAC ;
de Bruijn, EA ;
Guetens, G ;
de Boeck, G ;
Sparreboom, A ;
Verweij, J ;
Nooter, K .
CANCER BIOLOGY & THERAPY, 2005, 4 (07) :747-752
[7]   Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump [J].
Burger, H ;
van Tol, H ;
Boersma, AWM ;
Brok, M ;
Wiemer, EAC ;
Stoler, G ;
Nooter, K .
BLOOD, 2004, 104 (09) :2940-2942
[8]   Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells [J].
Cheok, MH ;
Yang, WL ;
Pui, CH ;
Downing, JR ;
Cheng, C ;
Naeve, CW ;
Relling, MV ;
Evans, WE .
NATURE GENETICS, 2003, 34 (01) :85-90
[9]  
Cohen MH, 2002, CLIN CANCER RES, V8, P935
[10]   hOCT 1 and resistance to imatinib [J].
Crossman, LC ;
Druker, BJ ;
Deininger, MWN .
BLOOD, 2005, 106 (03) :1133-1134