Increased positive electrostatic potential in p-hydroxybenzoate hydroxylase accelerates hydroxylation but slows turnover

被引:22
作者
Ortiz-Maldonado, M [1 ]
Cole, LJ [1 ]
Dumas, SM [1 ]
Entsch, B [1 ]
Ballou, DP [1 ]
机构
[1] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/bi030193d
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Para-hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the isoalloxazine ring within the protein structure. In this paper, we examine the effect of increased positive electrostatic potential in the active site upon the catalytic process with the enzyme mutation, Glu49Gln. This mutation removes a negative charge from a conserved buried charge pair. The properties of the Glu49Gln mutant enzyme are consistent with increased positive potential in the active site, but the mutant enzyme is difficult to study because it is unstable. There are two important changes in the catalytic function of the mutant enzyme as compared to the wild-type. First, the rate of hydroxylation of p-hydroxybenzoate by the transiently formed flavin hydroperoxide is an order of magnitude faster than in the wild-type. This result is consistent with one function proposed for the positive potential in the active site-to stabilize the negative C-4a-flavin alkoxide leaving group upon heterolytic fission of the peroxide bond. However, the mutant enzyme is a poorer catalyst than the wild-type enzyme because (unlike wild-type) the binding of p-hydroxybenzoate is a rate-limiting process. Our analysis shows that the mutant enzyme is slow to interconvert between conformations required to bind and release substrate. We conclude that the new open structure found in crystals of the Arg220Gln mutant enzyme [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613] is integral to the process of binding and release of substrate from oxidized enzyme during catalysis.
引用
收藏
页码:1569 / 1579
页数:11
相关论文
共 35 条
[1]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[2]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[3]  
DUMAS SM, 2002, FLAVINS FLAVOPROTEIN, V143
[4]  
ENTSCH B, 1991, J BIOL CHEM, V266, P17341
[5]   FLAVOPROTEIN STRUCTURE AND MECHANISM .1. STRUCTURE AND MECHANISM OF PARA-HYDROXYBENZOATE HYDROXYLASE [J].
ENTSCH, B ;
VANBERKEL, WJH .
FASEB JOURNAL, 1995, 9 (07) :476-483
[6]  
ENTSCH B, 1990, METHOD ENZYMOL, V188, P138
[7]  
ENTSCH B, 1976, J BIOL CHEM, V251, P2550
[8]   THE MOBILE FLAVIN OF 4-OH BENZOATE HYDROXYLASE [J].
GATTI, DL ;
PALFEY, BA ;
LAH, MS ;
ENTSCH, B ;
MASSEY, V ;
BALLOU, DP ;
LUDWIG, ML .
SCIENCE, 1994, 266 (5182) :110-114
[9]  
GIBSON QH, 1964, J BIOL CHEM, V239, P3927
[10]   CALCULATING THE ELECTROSTATIC POTENTIAL OF MOLECULES IN SOLUTION - METHOD AND ERROR ASSESSMENT [J].
GILSON, MK ;
SHARP, KA ;
HONIG, BH .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1988, 9 (04) :327-335