Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: An intracellular study

被引:301
作者
Timofeev, I [1 ]
Grenier, F [1 ]
Steriade, M [1 ]
机构
[1] Univ Laval, Fac Med, Neurophysiol Lab, Quebec City, PQ G1K 7P4, Canada
关键词
D O I
10.1073/pnas.041430398
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Earlier extracellular recordings during natural sleep have shown that, during slow-wave sleep (SWS), neocortical neurons display long-lasting periods of silence, whereas they are tonically active and discharge at higher rates during waking and sleep with rapid eye movements (REMs), We analyzed the nature of long-lasting periods of neuronal silence in SWS and the changes in firing rates related to ocular movements during REM sleep and waking using intracellular recordings from electrophysiologically identified neocortical neurons in nonanesthetized and nonparalyzed cats. We found that the silent periods during SWS are associated with neuronal hyperpolarizations, which are due to a mixture of K+ currents and disfacilitation processes. Conventional fast-spiking neurons (presumably local inhibitory interneurons) increased their firing rates during REMs and eye movements in waking. During REMls, the firing rates of regular-spiking neurons from associative areas decreased and intracellular traces revealed numerous, shortlasting, low-amplitude inhibitory postsynaptic potentials (IPSPs), that were reversed after intracellular chloride infusion. In awake cats, regular-spiking neurons could either increase or decrease their firing rates during eye movements. The short-lasting IPSPs associated with eye movements were still present in waking; they preceded the spikes and affected their timing. We propose that there are two different forms of firing rate control: disfacilitation induces long-lasting periods of silence that occur spontaneously during SWS, whereas active inhibition, consisting of low-amplitude, short-lasting IPSPs, is prevalent during REMs and precisely controls the timing of action potentials in waking.
引用
收藏
页码:1924 / 1929
页数:6
相关论文
共 54 条
[1]   Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex [J].
Ahmed, B ;
Anderson, JC ;
Douglas, RJ ;
Martin, KAC ;
Whitteridge, D .
CEREBRAL CORTEX, 1998, 8 (05) :462-476
[2]  
ALZHEIMER C, 1993, J NEUROSCI, V13, P660
[3]   INHIBITORY POTENTIALS IN NEURONS OF THE DEEP LAYERS OF THE INVITRO NEOCORTICAL SLICE [J].
AVOLI, M .
BRAIN RESEARCH, 1986, 370 (01) :165-170
[4]   Physiological properties of inhibitory interneurons in cat striate cortex [J].
Azouz, R ;
Gray, CM ;
Nowak, LG ;
McCormick, DA .
CEREBRAL CORTEX, 1997, 7 (06) :534-545
[5]   Visual input evokes transient and strong shunting inhibition in visual cortical neurons [J].
Borg-Graham, LJ ;
Monier, C ;
Frégnac, Y .
NATURE, 1998, 393 (6683) :369-373
[6]   Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex [J].
Buhl, EH ;
Tamas, G ;
Szilagyi, T ;
Stricker, C ;
Paulsen, O ;
Somogyi, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 500 (03) :689-713
[7]   INTRINSIC FIRING PATTERNS OF DIVERSE NEOCORTICAL NEURONS [J].
CONNORS, BW ;
GUTNICK, MJ .
TRENDS IN NEUROSCIENCES, 1990, 13 (03) :99-104
[8]   2 INHIBITORY POSTSYNAPTIC POTENTIALS, AND GABAA AND GABAB RECEPTOR-MEDIATED RESPONSES IN NEOCORTEX OF RAT AND CAT [J].
CONNORS, BW ;
MALENKA, RC ;
SILVA, LR .
JOURNAL OF PHYSIOLOGY-LONDON, 1988, 406 :443-468
[9]   Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks [J].
Contreras, D ;
Timofeev, I ;
Steriade, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (01) :251-264
[10]  
CONTRERAS D, 1995, J NEUROSCI, V15, P604