Spatio-temporal prediction of snow water equivalent using the Kalman filter

被引:101
作者
Huang, HC [1 ]
Cressie, N [1 ]
机构
[1] IOWA STATE UNIV SCI & TECHNOL,DEPT STAT,AMES,IA 50011
基金
美国国家科学基金会;
关键词
cross-validation; kriging; second-order stationary; spatio-temporal model;
D O I
10.1016/0167-9473(95)00047-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Consider a spatio-temporal stochastic process {Z(s; t): s is an element of D; t = 1, 2,...} and suppose it is of interest to predict {Z(s; t(0)): s is an element of D} at some fixed time point t(0). Purely spatial methods use data Z(s(1); t(0)),...,Z(s(n); t(0)) to construct a spatial predictor (e.g., kriging). But, when data {Z(s(i); t): i = 1,..., n; t = 1, 2,..., t(0)} are available, it is advantageous to treat the problem as one of spatiotemporal prediction. The US National Weather Service now use current snow water equivalent (SWE) data and a purely spatial model to predict SWE at sites where no observations are available. To improve SWE predictions, we introduce a spatio-temporal model that incorporates the SWE data from the past, resulting in a Kalman-filter prediction algorithm. A simple procedure for estimating the parameters in the model is developed and an example is presented for the Animas River basin in southwest Colorado.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 10 条
  • [1] [Anonymous], 1993, J AGR BIOL ENVIR ST
  • [2] Brockwell P. J., 1991, TIME SERIES THEORY M
  • [3] SPATIAL MODELING OF SNOW WATER EQUIVALENT USING AIRBORNE AND GROUND-BASED SNOW DATA
    CARROLL, SS
    DAY, GN
    CRESSIE, N
    CARROLL, TR
    [J]. ENVIRONMETRICS, 1995, 6 (02) : 127 - 139
  • [4] CARROLL SS, 1996, IN PRESS J HYDROLOGY
  • [5] CASTRUCCIO PA, 1980, P FIN WORKSH OP APPL, P239
  • [6] ROBUST ESTIMATION OF THE VARIOGRAM .1.
    CRESSIE, N
    HAWKINS, DM
    [J]. JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1980, 12 (02): : 115 - 125
  • [7] DAY GN, 1990, 43 NOAA NWS
  • [8] LINEAR DYNAMIC RECURSIVE ESTIMATION FROM VIEWPOINT OF REGRESSION-ANALYSIS
    DUNCAN, DB
    HORN, SD
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (340) : 815 - 821
  • [9] Harvey Andrew C., 1989, Forecasting, Structural Time Series Models and the Kalman Filter
  • [10] Searle SR., 2016, LINEAR MODELS