Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels

被引:212
作者
Goldfarb, Mitchell
Schoorlemmer, Jon
Williams, Anthony
Diwakar, Shyam
Wang, Cling
Huan, Xiao
Giza, Joanna
Tchetchik, Dafna
Kelley, Kevin
Vega, Ana
Matthews, Gary
Rossi, Paola
Ornitz, David M.
D'Angelo, Egidio
机构
[1] CUNY Hunter Coll, Dept Biol Sci, New York, NY 10021 USA
[2] Mt Sinai Sch Med, Dept Mol Cell & Dev Biol, New York, NY 10029 USA
[3] Univ Pavia, Dept Pharmacol & Physiol Sci, I-27100 Pavia, Italy
[4] Univ Milan, Dept Math, Milan, Italy
[5] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
[6] SUNY Stony Brook, Dept Neurobiol & Behav, Stony Brook, NY 11794 USA
关键词
D O I
10.1016/j.neuron.2007.07.006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neurons integrate and encode complex synaptic inputs into action potential outputs through a process termed "intrinsic excitability." Here, we report the essential contribution of fibroblast growth factor homologous factors (FHFs), a family of voltage-gated sodium channel binding proteins, to this process. Fhf1(-/-)Fhf4(-/-) mice suffer from severe ataxia and other neurological deficits. In mouse cerebellar slice recordings, WT granule neurons can be induced to fire action potentials repetitively (similar to 60 Hz), whereas Fhf1(-/-)Fhf4(-/-) neurons often fire only once and at an elevated voltage spike threshold. Sodium channels in Fhf1(-/-)Fhf4(-/-) granule neurons inactivate at more negative membrane potential, inactivate more rapidly, and are slower to recover from the inactivated state. Altered sodium channel physiology is sufficient to explain excitation deficits, as tested in a granule cell computer model. These findings offer a physiological mechanism underlying human spinocerebellar ataxia induced by Fhf4 mutation and suggest a broad role for FHFs in the control of excitability throughout the CNS.
引用
收藏
页码:449 / 463
页数:15
相关论文
共 47 条
[1]   Modulation of the cardiac sodium channel NaV1.5 by Fyn, a Src family tyrosine kinase [J].
Ahern, CA ;
Zhang, JF ;
Wookalis, MJ ;
Horn, R .
CIRCULATION RESEARCH, 2005, 96 (09) :991-998
[2]   Novel LQT-3 mutation affects Na+ channel activity through interactions between α- and β1-subunits [J].
An, RH ;
Wang, XL ;
Kerem, B ;
Benhorin, J ;
Medina, A ;
Goldmit, M ;
Kass, RS .
CIRCULATION RESEARCH, 1998, 83 (02) :141-146
[3]   Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon [J].
Boiko, T ;
Rasband, MN ;
Levinson, SR ;
Caldwell, JH ;
Mandel, G ;
Trimmer, JS ;
Matthews, G .
NEURON, 2001, 30 (01) :91-104
[4]   Neuromodulation of Na+ channels:: An unexpected form of cellular plasticity [J].
Cantrell, AR ;
Catterall, WA .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (06) :397-407
[5]   Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression [J].
Casado, M ;
Isope, P ;
Ascher, P .
NEURON, 2002, 33 (01) :123-130
[6]   From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels [J].
Catterall, WA .
NEURON, 2000, 26 (01) :13-25
[7]   Integration of quanta in cerebellar granule cells during sensory processing [J].
Chadderton, P ;
Margrie, TW ;
Häusser, M .
NATURE, 2004, 428 (6985) :856-860
[8]   Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits [J].
Chen, CL ;
Bharucha, V ;
Chen, YA ;
Westenbroek, RE ;
Brown, A ;
Malhotra, JD ;
Jones, D ;
Avery, C ;
Gillespie, PJ ;
Kazen-Gillespie, KA ;
Kazarinova-Noyes, K ;
Shrager, P ;
Saunders, TL ;
Macdonald, RL ;
Ransom, BR ;
Scheuer, T ;
Catterall, WA ;
Isom, LL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :17072-17077
[9]   Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current [J].
D'Angelo, E ;
De Filippi, G ;
Rossi, P ;
Taglietti, V .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (02) :493-503
[10]   Theta-frequency bursting and resonance in cerebellar granule cells:: Experimental evidence and modeling of a slow K+-dependent mechanism [J].
D'Angelo, E ;
Nieus, T ;
Maffei, A ;
Armano, S ;
Rossi, P ;
Taglietti, V ;
Fontana, A ;
Naldi, G .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :759-770