Global convergence for evolution strategies in spherical problems:: some simple proofs and difficulties

被引:26
作者
Bienvenüe, A
François, O
机构
[1] LMC, F-38041 Grenoble 9, France
[2] TIMC, TIMB, F-38706 La Tronche, France
关键词
evolution strategies; global convergence; Markov chains;
D O I
10.1016/S0304-3975(03)00284-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents simple proofs for the global convergence of evolution strategies in spherical problems. We investigate convergence properties for both adaptive and self-adaptive strategies. Regarding adaptive strategies, the convergence rates are computed explicitly and compared with the results obtained in the so-called "rate-of-progress" theory. Regarding self-adaptive strategies, the computation is conditional to the knowledge of a specific induced Markov chain. An explicit example of chaotic behavior illustrates the complexity in dealing with such chains. In addition to these proofs, this work outlines a number of difficulties in dealing with evolution strategies. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 289
页数:21
相关论文
共 15 条
[1]  
Back T, 1996, EVOLUTIONARY ALGORIT
[2]   An Overview of Evolutionary Algorithms for Parameter Optimization [J].
Baeck, Thomas ;
Schwefel, Hans-Paul .
EVOLUTIONARY COMPUTATION, 1993, 1 (01) :1-23
[3]  
Beyer H.-G., 1996, EVOL COMPUT, V3, P311, DOI DOI 10.1162/EVC0.1995.3.3.311
[4]  
Beyer H.-G., 2013, THEORY EVOLUTION STR
[5]   Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,(+) lambda)-Theory [J].
Beyer, Hans-Georg .
EVOLUTIONARY COMPUTATION, 1993, 1 (02) :165-188
[6]   Parameter control in evolutionary algorithms [J].
Eiben, AE ;
Hinterding, R ;
Michalewicz, Z .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) :124-141
[7]  
Janssen J., 1969, CAHIERS CERO, V11, P181
[8]  
MEYN S, 1994, MARKOV CHAINS STABIL
[9]  
ROBERT CP, 1999, MONTECARLO MARKOV CH
[10]  
Rudolph G., 1997, CONVERGENCE PROPERTI