Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity

被引:274
作者
Chen, S [1 ]
Berthelier, V [1 ]
Yang, W [1 ]
Wetzel, R [1 ]
机构
[1] Univ Tennessee, Med Ctr, Grad Sch Med, Knoxville, TN 37920 USA
关键词
polyglutamine; aggregation; Huntington's disease; inclusion; nucleation;
D O I
10.1006/jmbi.2001.4850
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In expanded CAG repeat diseases such as Huntington's disease, proteins containing polyglutamine (poly(Gln)) sequences with repeat lengths of about 37 residues or more are associated with development of both disease symptoms and neuronal intranuclear inclusions (NIIs). Disease physiology in animal and cellular models does not always correlate with NE formation, however, and the mechanism by which aggregate for,gr information might lead to cytotoxicity is unknown. To help evaluate various possible mechanisms, we determined the biophysical properties of a series of simple poly(Gln) peptides. The circular dichroism spectra of poly(Gln) peptides with repeat lengths of five, 15, 28 and 44 residues are all nearly identical and are consistent with a high degree of random coil structure, suggesting that the length-dependence of disease is not related to a conformational change in the monomeric states of expanded poly(Gln) sequences. In contrast, there is a dramatic increase in both the kinetics and the thermodynamic favorability of the spontaneous formation of ordered, amyloid-like aggregates for poly(Gln) peptides with repeat lengths of greater than 37 residues. At the same time, poly(Gln) peptides with repeat lengths in the 15-20 residue range, despite their poor abilities to support spontaneous, self-nucleated aggregation, are capable of efficiently adding to an already-formed aggregate. We also find that morphologically small, finely divided aggregates are much more efficient at recruiting poly(Gln) peptides than are large aggregates, suggesting a possible explanation for why disease pathology does not always correlate with the observable NII burden. Together, these data are consistent with a model for disease pathology in which critical cellular proteins possessing poly(Gln) sequences of modest length become inactivated when they are recruited into aggregates of an expanded poly(Gln) protein. (C) 2001 Academic Press.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 55 条
[1]  
Altschuler EL, 1997, J PEPT RES, V50, P73
[2]  
BERTHELIER V, 2001, IN PRESS ANAL BIOCH, V296
[3]  
BERTHELIER V, 2002, METHODS MOL MED NEUR
[4]   KINETICS OF NUCLEATION-CONTROLLED POLYMERIZATION - A PERTURBATION TREATMENT FOR USE WITH A SECONDARY PATHWAY [J].
BISHOP, MF ;
FERRONE, FA .
BIOPHYSICAL JOURNAL, 1984, 46 (05) :631-644
[5]   Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 [J].
Bruijn, LI ;
Houseweart, MK ;
Kato, S ;
Anderson, KL ;
Anderson, SD ;
Ohama, E ;
Reaume, AG ;
Scott, RW ;
Cleveland, DW .
SCIENCE, 1998, 281 (5384) :1851-1854
[6]   Transcriptional dysregulation in Huntington's disease [J].
Cha, JHJ .
TRENDS IN NEUROSCIENCES, 2000, 23 (09) :387-392
[7]   Solubilization and disaggregation of polyglutamine peptides [J].
Chen, SM ;
Wetzel, R .
PROTEIN SCIENCE, 2001, 10 (04) :887-891
[8]   Fourteen and counting: unraveling trinucleotide repeat diseases [J].
Cummings, CJ ;
Zoghbi, HY .
HUMAN MOLECULAR GENETICS, 2000, 9 (06) :909-916
[9]   Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J].
Davies, SW ;
Turmaine, M ;
Cozens, BA ;
DiFiglia, M ;
Sharp, AH ;
Ross, CA ;
Scherzinger, E ;
Wanker, EE ;
Mangiarini, L ;
Bates, GP .
CELL, 1997, 90 (03) :537-548
[10]  
DIAMANDIS EP, 1988, CLIN BIOCHEM, V21, P139, DOI 10.1016/0009-9120(88)90001-X