Diffusion approximation for nonparametric autoregression

被引:16
作者
Milstein, G [1 ]
Nussbaum, M [1 ]
机构
[1] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
关键词
nonparametric experiments; deficiency distance; likelihood ratio process; stochastic differential equation; autoregression; diffusion sampling; asymptotic sufficiency;
D O I
10.1007/s004400050199
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A nonparametric statistical model of small diffusion type is compared with its discretization by a stochastic Euler difference scheme. It is shown that the discrete and continuous models are asymptotically equivalent in the sense of Le Cam's deficiency distance for statistical experiments, when the discretization step decreases with the noise intensity epsilon.
引用
收藏
页码:535 / 543
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1968, Probability
[2]  
BOSQ D, 1996, LECT NOTES STAT, V110
[3]  
Brown LD, 1996, ANN STAT, V24, P2384
[4]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[5]   GAUSSIAN LIKELIHOOD ESTIMATION FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
COX, DD .
ANNALS OF STATISTICS, 1991, 19 (03) :1129-1142
[6]  
Doukhan P., 1983, Stochastic Process. Appl., V15, P271, DOI DOI 10.1016/0304-4149(83)90036-4
[7]   AN ASYMPTOTIC SUFFICIENCY PROPERTY OF OBSERVATIONS RELATED TO THE 1ST HITTING TIMES OF A DIFFUSION [J].
GENONCATALOT, V ;
LAREDO, C .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :253-258
[8]   Asymptotic equivalence for nonparametric generalized linear models [J].
Grama, I ;
Nussbaum, M .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (02) :167-214
[9]  
Jacod J., 2003, LIMIT THEOREMS STOCH