Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells

被引:120
作者
Abraham, D. P. [1 ]
Furczon, M. M. [1 ]
Kang, S. -H. [1 ]
Dees, D. W. [1 ]
Jansen, A. N. [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
LiPF6; LiBF4; LiBOB; LiF2OB; SEI; EIS;
D O I
10.1016/j.jpowsour.2008.02.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi0.8Co0.15Al0.05O2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF4 > LiF2OB > LiPF6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF4 cells. The positive electrode impedance values for the LiBF4, LiF2OB, and LiPF6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF4, LiBOB, LiF2OB, and vinylene carbonate (VC) to the EC: EMC (3:7 by wt.) + 1.2 M LiPF6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:612 / 620
页数:9
相关论文
共 32 条
  • [1] Performance degradation of high-power lithium-ion cells- Electrochemistry of harvested electrodes
    Abraham, D. P.
    Knuth, J. L.
    Dees, D. W.
    Bloom, I.
    Christophersen, J. P.
    [J]. JOURNAL OF POWER SOURCES, 2007, 170 (02) : 465 - 475
  • [2] Diagnostic examination of thermally abused high-power lithium-ion cells
    Abraham, D. P.
    Roth, E. P.
    Kostecki, R.
    McCarthy, K.
    MacLaren, S.
    Doughty, D. H.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 648 - 657
  • [3] Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells
    Abraham, DP
    Poppen, SD
    Jansen, AN
    Liu, J
    Dees, DW
    [J]. ELECTROCHIMICA ACTA, 2004, 49 (26) : 4763 - 4775
  • [4] Surface characterization of electrodes from high power lithium-ion batteries
    Andersson, AM
    Abraham, DP
    Haasch, R
    MacLaren, S
    Liu, J
    Amine, K
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) : A1358 - A1369
  • [5] Electrochemically lithiated graphite characterised by photoelectron spectroscopy
    Andersson, AM
    Henningson, A
    Siegbahn, H
    Jansson, U
    Edström, K
    [J]. JOURNAL OF POWER SOURCES, 2003, 119 : 522 - 527
  • [6] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [7] Design of electrolyte solutions for Li and Li-ion batteries: a review
    Aurbach, D
    Talyosef, Y
    Markovsky, B
    Markevich, E
    Zinigrad, E
    Asraf, L
    Gnanaraj, JS
    Kim, HJ
    [J]. ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 247 - 254
  • [8] On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries
    Aurbach, D
    Gamolsky, K
    Markovsky, B
    Gofer, Y
    Schmidt, M
    Heider, U
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (09) : 1423 - 1439
  • [9] Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries
    Aurbach, Doron
    Markovsky, Boris
    Salitra, Gregory
    Markevich, Elena
    Talyossef, Yossi
    Koltypin, Maxim
    Nazar, Linda
    Ellis, Brian
    Kovacheva, Daniella
    [J]. JOURNAL OF POWER SOURCES, 2007, 165 (02) : 491 - 499
  • [10] A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries
    Bar-Tow, D
    Peled, E
    Burstein, L
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) : 824 - 832