A note on Riesz bases of eigenvectors of certain holomorphic operator-functions

被引:4
作者
Lutgen, J [1 ]
机构
[1] Univ Mainz, Fachbereich Math, D-55099 Mainz, Germany
关键词
Riesz basis; eigenvectors; operator-function;
D O I
10.1006/jmaa.2000.7154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Operator-valued functions of the form A(lambda) := A - lambda + Q(lambda) with lambda --> Q(lambda)(A - mu)(-1) compact-valued and holomorphic on certain domains Omega subset of C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for K of finite defect, it is shown that under certain growth conditions on parallel toQ(lambda)(A - lambda)(-1)parallel to the eigenvectors of A corresponding to a Dart of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A(lambda) = A - lambda + B(lambda - D)C-1 and to spectral problems in L-2(0, 1) of the form -f " (x) + p(x, lambda )f'(x) + q(x, lambda )f(x.) = lambdaf(x) with, for example, Dirichlet boundary conditions. (C) 2001 Academic Press.
引用
收藏
页码:358 / 373
页数:16
相关论文
共 27 条
[1]  
Adamjan A., 1995, J OPERAT THEOR, V33, P259
[2]  
BOGOMOLOVA JB, 1985, DIFF URAVN, V21, P1843
[3]   NONLINEAR EIGENVALUE PROBLEMS [J].
FRIEDMAN, A ;
SHINBROT, M .
ACTA MATHEMATICA UPPSALA, 1968, 121 (1-2) :77-&
[4]  
Gohberg I.C., 1969, Introduction to the theory of linear nonselfadjoint operators, V18, pxv+378
[5]  
Gohberg I.C., 1971, Math. USSR-Sb, V13, P603, DOI [10.1070/SM1971v013n04ABEH003702, DOI 10.1070/SM1971V013N04ABEH003702]
[6]   EQUIVALENCE, LINEARIZATION, AND DECOMPOSITION OF HOLOMORPHIC OPERATOR FUNCTIONS [J].
GOHBERG, IC ;
KAASHOEK, MA ;
LAY, DC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (01) :102-144
[7]  
GOHBERG IC, 1990, OPERATOR THEORY ADV, V29
[8]   Accumulation of discrete eigenvalues of the radial Dirac operator [J].
Griesemer, M ;
Lutgen, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 162 (01) :120-134
[9]  
Kato T., 1976, GRUNDLEHREN MATH WIS, V132
[10]  
LANGER H, 1990, ADV APPL, V48, P319