Self-Assembly Fibrillar Network Gels of Simple Surfactants in Organic Solvents

被引:37
作者
Wang, Dong [1 ,2 ]
Hao, Jingcheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Shandong Univ, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
关键词
ENERGY-TRANSFER; SODIUM LAURATE; METAL; HYDROGELS; FIBERS; STABILIZATION; NANOPARTICLES; ORGANOGELS; GELATORS; GELATION;
D O I
10.1021/la104333x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The self-assembled fibrillar network (SAFIN) organogels of a simple surfactant molecule, sodium laurate (C11H23COONa, SL), in organic solvents were investigated. The sol gel transformation temperature depended on the SL concentration, the solvent, and the concentration of Na+ was evaluated. An important finding is that Na+ ions play an important role in forming organogels, which was regarded as the induction factor of gelation, but other cations, for instance, Li+, K+, Ca2+, and Mg2+, do not have this capability. The observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) proved that the organogels were network structures with fibers and ribbons by trapping a certain amount of organic solvent. High-resolution TEM (HR-TEM) images indicated that each of the fibers or ribbons was composed of cylindrical micelles. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra demonstrated that SL molecules in gels behave similarly to those in SL crystals. The mechanism of organogel formation was elaborated to provide a better understanding of fibrous surfactant gels in organic solvents.
引用
收藏
页码:1713 / 1717
页数:5
相关论文
共 31 条
[1]   Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water [J].
Adhikari, Bimalendu ;
Palui, Goutam ;
Banerjee, Arindam .
SOFT MATTER, 2009, 5 (18) :3452-3460
[2]   Gelation-assisted light harvesting by selective energy transfer from an oligo(p-phenylenevinylene)-based self-assembly to an organic dye [J].
Ajayaghosh, A ;
George, SJ ;
Praveen, VK .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (03) :332-+
[3]   Organogels as scaffolds for excitation energy transfer and light harvesting [J].
Ajayaghosh, Ayyappanpillai ;
Praveen, Vakayil K. ;
Vijayakumar, Chakkooth .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (01) :109-122
[4]   Two-component hydrogels comprising fatty acids and amines: Structure, properties, and application as a template for the synthesis of metal nanoparticles [J].
Basit, Haira ;
Pal, Asish ;
Sen, Saikat ;
Bhattacharya, Santanu .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (21) :6534-6545
[5]   Pharmaceutical organogels prepared from aromatic amino acid derivatives [J].
Bastiat, Guillaume ;
Leroux, Jean-Christophe .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (23) :3867-3877
[6]   Water gelation by small organic molecules [J].
Estroff, LA ;
Hamilton, AD .
CHEMICAL REVIEWS, 2004, 104 (03) :1201-1217
[7]   FLUID AND SOLID FIBERS MADE OF LIPID MOLECULAR BILAYERS [J].
FUHRHOP, JH ;
HELFRICH, W .
CHEMICAL REVIEWS, 1993, 93 (04) :1565-1582
[8]   Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids [J].
George, Mathew ;
Weiss, Richard G. .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (08) :489-497
[9]   Nonequilibrium behavior in the three-component system stearic acid-sodium stearate-water [J].
Heppenstall-Butler, M ;
Butler, MF .
LANGMUIR, 2003, 19 (24) :10061-10072
[10]   Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J].
Hu, JT ;
Odom, TW ;
Lieber, CM .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (05) :435-445