Asymmetric cell division during neurogenesis in Drosophila and vertebrates

被引:122
作者
Wodarz, A
Huttner, WB
机构
[1] Univ Dusseldorf, Inst Genet, D-40225 Dusseldorf, Germany
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
Drosophila; neurogenesis; vertebrates; asymmetric cell division; stem cells;
D O I
10.1016/j.mod.2003.06.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The majority of cells that build the nervous system of animals are generated early in embryonic development in a process called neurogenesis. Although the vertebrate nervous system is much more complex than that of insects, the underlying principles of neurogenesis are intriguingly similar. In both cases, neuronal cells are derived from polarized progenitor cells that divide asymmetrically. One daughter cell will continue to divide and the other daughter cell leaves the cell cycle and starts to differentiate as a neuron or a glia cell. In Drosophila, this process has been analyzed in great detail and several of the key players that control asymmetric cell division in the developing nervous system have been identified over the past years. Asymmetric cell division in vertebrate neurogenesis has been studied mostly at a descriptive level and so far little is known about the molecular mechanisms that control this process. In this review we will focus on recent findings dealing with asymmetric cell division during neurogenesis in Drosophila and vertebrates and will discuss common principles and apparent differences between both systems. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:1297 / 1309
页数:13
相关论文
共 123 条
[1]   Neuroepithelial cells downregulate their plasma membrane polarity prior to neural tube closure and neurogenesis [J].
Aaku-Saraste, E ;
Oback, B ;
Hellwig, A ;
Huttner, WB .
MECHANISMS OF DEVELOPMENT, 1997, 69 (1-2) :71-81
[2]   Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure - Remodeling of the neuroepithelium prior to neurogenesis [J].
AakuSaraste, E ;
Hellwig, A ;
Huttner, WB .
DEVELOPMENTAL BIOLOGY, 1996, 180 (02) :664-679
[3]   Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry [J].
Albertson, R ;
Doe, CQ .
NATURE CELL BIOLOGY, 2003, 5 (02) :166-170
[4]  
Ashraf SI, 2001, DEVELOPMENT, V128, P4757
[5]   Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity [J].
Bachmann, A ;
Schneider, M ;
Theilenberg, E ;
Grawe, F ;
Knust, E .
NATURE, 2001, 414 (6864) :638-643
[6]   The partner of inscuteable/discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila [J].
Bellaïche, Y ;
Radovic, A ;
Woods, DF ;
Hough, CD ;
Parmentier, ML ;
O'Kane, CJ ;
Bryant, PJ ;
Schweisguth, F .
CELL, 2001, 106 (03) :355-366
[7]   Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division [J].
Bellaïche, Y ;
Gho, M ;
Kaltschmidt, JA ;
Brand, AH ;
Schweisguth, F .
NATURE CELL BIOLOGY, 2001, 3 (01) :50-57
[8]   The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl [J].
Betschinger, J ;
Mechtler, K ;
Knoblich, JA .
NATURE, 2003, 422 (6929) :326-330
[9]   Integrated activity of PDZ protein complexes regulates epithelial polarity [J].
Bilder, D ;
Schober, M ;
Perrimon, N .
NATURE CELL BIOLOGY, 2003, 5 (01) :53-58
[10]   Localization of apical epithelial determinants by the basolateral PDZ protein Scribble [J].
Bilder, D ;
Perrimon, N .
NATURE, 2000, 403 (6770) :676-680