Molecular docking to ensembles of protein structures

被引:302
作者
Knegtel, RMA [1 ]
Kuntz, ID [1 ]
Oshiro, CM [1 ]
机构
[1] UNIV CALIF SAN FRANCISCO,SCH PHARM,DEPT PHARMACEUT CHEM,SAN FRANCISCO,CA 94143
关键词
DOCK; receptor flexibility; ensemble; structure-based drug design;
D O I
10.1006/jmbi.1996.0776
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Until recently, applications of molecular docking assumed that the macromolecular receptor exists in a single, rigid conformation. However, structural studies involving different ligands bound to the same target biomolecule frequently reveal modest but significant conformational changes in the-target. In this paper, two related methods for molecular docking are described that utilize information on conformational variability from ensembles of experimental receptor structures. One method combines the information into an ''energy-weighted average'' of the interaction energy between a ligand and each receptor structure. The other method performs the averaging on a structural level, producing a ''geometry-weighted average'' of the inter-molecular force field score used in DOCK 3.5. Both methods have been applied in docking small molecules to ensembles of crystal and solution structures, and we show that experimentally determined binding orientations and computed energies of known ligands can be reproduced accurately. The use of composite grids, when conformationally different protein structures are available, yields an improvement in computational speed for database searches in proportion to the number of structures. (C) 1997 Academic Press Limited.
引用
收藏
页码:424 / 440
页数:17
相关论文
共 46 条
[1]   INHIBITION OF HUMAN IMMUNODEFICIENCY VIRUS-1 PROTEASE BY A C2-SYMMETRICAL PHOSPHINATE - SYNTHESIS AND CRYSTALLOGRAPHIC ANALYSIS [J].
ABDELMEGUID, SS ;
ZHAO, BG ;
MURTHY, KHM ;
WINBORNE, E ;
CHOI, JK ;
DESJARLAIS, RL ;
MINNICH, MD ;
CULP, JS ;
DEBOUCK, C ;
TOMASZEK, TA ;
MEEK, TD ;
DREYER, GB .
BIOCHEMISTRY, 1993, 32 (31) :7972-7980
[2]   DOCKING BY LEAST-SQUARES FITTING OF MOLECULAR-SURFACE PATTERNS [J].
BACON, DJ ;
MOULT, J .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 225 (03) :849-858
[3]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[4]   LUDI - RULE-BASED AUTOMATIC DESIGN OF NEW SUBSTITUENTS FOR ENZYME-INHIBITOR LEADS [J].
BOHM, HJ .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1992, 6 (06) :593-606
[5]   THE COMPUTER-PROGRAM LUDI - A NEW METHOD FOR THE DENOVO DESIGN OF ENZYME-INHIBITORS [J].
BOHM, HJ .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1992, 6 (01) :61-78
[6]   CONFORMATIONAL VARIABILITY OF SOLUTION NUCLEAR-MAGNETIC-RESONANCE STRUCTURES [J].
BONVIN, AMJJ ;
BRUNGER, AT .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (01) :80-93
[7]   FLEXIBLE LIGAND DOCKING WITHOUT PARAMETER ADJUSTMENT ACROSS 4 LIGAND-RECEPTOR COMPLEXES [J].
CLARK, KP ;
AJAY .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (10) :1210-1226
[8]   PROGESTERONE BINDING TO UTEROGLOBIN - 2 ALTERNATIVE ORIENTATIONS OF THE LIGAND [J].
DUNKEL, R ;
VRIEND, G ;
BEATO, M ;
SUSKO, G .
PROTEIN ENGINEERING, 1995, 8 (01) :71-79
[9]   DESIGN, ACTIVITY, AND 2.8 A CRYSTAL-STRUCTURE OF A C2 SYMMETRICAL INHIBITOR COMPLEXED TO HIV-1 PROTEASE [J].
ERICKSON, J ;
NEIDHART, DJ ;
VANDRIE, J ;
KEMPF, DJ ;
WANG, XC ;
NORBECK, DW ;
PLATTNER, JJ ;
RITTENHOUSE, JW ;
TURON, M ;
WIDEBURG, N ;
KOHLBRENNER, WE ;
SIMMER, R ;
HELFRICH, R ;
PAUL, DA ;
KNIGGE, M .
SCIENCE, 1990, 249 (4968) :527-533
[10]  
FITZGERALD PMD, 1990, J BIOL CHEM, V265, P14209