Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar:: a sensitivity analysis

被引:271
作者
Ehret, G. [1 ]
Kiemle, C. [1 ]
Wirth, M. [1 ]
Amediek, A. [1 ]
Fix, A. [1 ]
Houweling, S. [2 ]
机构
[1] Deutsches Zentram Luft & Raumfahrt DLR, Inst Atmospher Phys, D-82234 Oberpfaffenhofen, Germany
[2] Natl Inst Space Res SRON, Utrecht, Netherlands
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2008年 / 90卷 / 3-4期
关键词
D O I
10.1007/s00340-007-2892-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5-1.5 m) and laser average power (0.4-4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 mu m, 0.4% for CO2 at 2.1 mu m, 0.6% for CH4 at 2.3 mu m, and 0.3% for N2O at 3.9 mu m. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of +/- 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 mu m.
引用
收藏
页码:593 / 608
页数:16
相关论文
共 43 条
[1]   REMOTE MEASUREMENT OF ATMOSPHERIC N2O WITH A DF-LASER LIDAR [J].
ALTMANN, J ;
LAHMANN, W ;
WEITKAMP, C .
APPLIED OPTICS, 1980, 19 (20) :3453-3457
[2]  
[Anonymous], 2001, IPCC 3 ASSESSMENT RE
[3]  
[Anonymous], 2001, ESA
[4]   CONTINUOUSLY TUNABLE IR LIDAR WITH APPLICATIONS TO REMOTE MEASUREMENTS OF SO2 AND CH4 [J].
BAUMGARTNER, RA ;
BYER, RL .
APPLIED OPTICS, 1978, 17 (22) :3555-3561
[5]   REQUIREMENTS OF A COHERENT LASER PULSE-DOPPLER RADAR [J].
BIERNSON, G ;
LUCY, RF .
PROCEEDINGS OF THE IEEE, 1963, 51 (01) :202-&
[6]   Atmospheric methane and carbon dioxide from SCIAMACHY satellite data:: initial comparison with chemistry and transport models [J].
Buchwitz, M ;
de Beek, R ;
Burrows, JP ;
Bovensmann, H ;
Warneke, T ;
Notholt, J ;
Meirink, JF ;
Goede, APH ;
Bergamaschi, P ;
Körner, S ;
Heimann, M ;
Schulz, A .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :941-962
[7]   FREQUENCY-DOUBLED CO2 LIDAR MEASUREMENT AND DIODE-LASER SPECTROSCOPY OF ATMOSPHERIC CO2 [J].
BUFTON, JL ;
ITABE, T ;
STROW, LL ;
KORB, CL ;
GENTRY, BM ;
WENG, CY .
APPLIED OPTICS, 1983, 22 (17) :2592-2602
[8]   The feasibility of monitoring CO2 from high-resolution infrared sounders -: art. no. 4064 [J].
Chédin, A ;
Saunders, R ;
Hollingsworth, A ;
Scott, N ;
Matricardi, M ;
Etcheto, J ;
Clerbaux, C ;
Armante, R ;
Crevoisier, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D2)
[9]   The orbiting carbon observatory (OCO) mission [J].
Crisp, D ;
Atlas, RM ;
Breon, FM ;
Brown, LR ;
Burrows, JP ;
Ciais, P ;
Connor, BJ ;
Doney, SC ;
Fung, IY ;
Jacob, DJ ;
Miller, CE ;
O'Brien, D ;
Pawson, S ;
Randerson, JT ;
Rayner, P ;
Salawitch, RJ ;
Sander, SP ;
Sen, B ;
Stephens, GL ;
Tans, PP ;
Toon, GC ;
Wennberg, PO ;
Wofsy, SC ;
Yung, YL ;
Kuang, ZM ;
Chudasama, B ;
Sprague, G ;
Weiss, B ;
Pollock, R ;
Kenyon, D ;
Schroll, S .
TRACE CONSTITUENTS IN THE TROPOSPHERE AND LOWER STRATOSPHERE, 2004, 34 (04) :700-709
[10]   Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method:: error analysis [J].
Dufour, E ;
Bréon, FM .
APPLIED OPTICS, 2003, 42 (18) :3595-3609