Finding Density Functionals with Machine Learning

被引:470
作者
Snyder, John C. [1 ,2 ]
Rupp, Matthias [3 ,4 ]
Hansen, Katja [3 ]
Mueller, Klaus-Robert [3 ,5 ]
Burke, Kieron [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA
[3] Tech Univ Berlin, Machine Learning Grp, D-10587 Berlin, Germany
[4] ETH, Inst Pharmaceut Sci, CH-8093 Zurich, Switzerland
[5] Korea Univ, Dept Brain & Cognit Engn, Seoul 136713, South Korea
基金
美国国家科学基金会;
关键词
APPROXIMATION;
D O I
10.1103/PhysRevLett.108.253002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.
引用
收藏
页数:5
相关论文
共 22 条
[1]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[2]  
Braun ML, 2008, J MACH LEARN RES, V9, P1875
[3]   Perspective on density functional theory [J].
Burke, Kieron .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[4]  
Dreizler R., 1990, DENSITY FUNCTIONAL T
[5]   Semiclassical origins of density functionals [J].
Elliott, Peter ;
Lee, Donghyung ;
Cangi, Attila ;
Burke, Kieron .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[6]  
Hairer Ernst, 2000, Solving Ordinary Differential Equations I, Nonstiff Problems
[7]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7
[8]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[9]  
Ivanciuc O., 2007, REV COMPUTATIONAL CH, P291, DOI [10.1002/9780470116449.ch6, DOI 10.1002/9780470116449.CH6]
[10]  
KARASIEV VV, NEW DEV QUA IN PRESS