Estimating the rate of oxygen consumption during submersion from the heart rate of diving animals

被引:15
作者
Green, J. A. [1 ]
Halsey, L. G.
Butler, P. J.
Holder, R. L.
机构
[1] La Trobe Univ, Dept Zool, Melbourne, Vic 3086, Australia
[2] Univ Birmingham, Ctr Ornithol, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[3] Univ Birmingham, Dept Primary Care & Gen Practice, Birmingham B15 2TT, W Midlands, England
关键词
penguin; model; oxygen stores; hypometabolism;
D O I
10.1152/ajpregu.00691.2006
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
How animals manage their oxygen stores during diving and other breath-hold activities has been a topic of debate among physiologists for decades. Specifically, while the behavior of free-ranging diving animals suggests that metabolism during submersion must be primarily aerobic in nature, no studies have been able to determine their rate of oxygen consumption during submersion (Vo(2)D) and hence prove that this is the case. In the present study, we combine two previously used techniques and develop a new model to estimate Vo(2)D accurately and plausibly in a free-ranging animal and apply it to data for macaroni penguins (Eudyptes chrysolophus) as an example. For macaroni penguins at least, Vo(2)D can be predicted by measuring heart rate during the dive cycle and the subsequent surface interval duration. Including maximum depth of the dive improves the accuracy of these predictions. This suggests that energetically demanding locomotion events within the dive combine with the differing buoyancy and locomotion costs associated with traveling to depth to influence its cost in terms of oxygen use. This will in turn effect the duration of the dive and the duration of the subsequent recovery period. In the present study, Vo(2)D ranged from 4 to 28 ml(.)min(-1.)kg(-1), indicating that, at least as far as aerobic metabolism was concerned, macaroni penguins were often hypometabolic, with rates of oxygen consumption usually below that for this species resting in water (25.6 ml(.)min(-1.)kg(-1)) and occasionally lower than that while resting in air (10.3 ml(.)min(-1.)kg(-1)).
引用
收藏
页码:R2028 / R2038
页数:11
相关论文
共 58 条
[1]  
Andrews RD, 1997, J EXP BIOL, V200, P2083
[2]  
Bevan RM, 1997, J EXP BIOL, V200, P661
[3]  
BEVAN RM, 1992, J EXP BIOL, V168, P199
[4]  
BEVAN RM, 1992, J EXP BIOL, V162, P91
[5]   Heart rate and behavior of fur seals: implications for measurement of field energetics [J].
Boyd, IL ;
Bevan, RM ;
Woakes, AJ ;
Butler, PJ .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1999, 276 (03) :H844-H857
[6]   Aerobic dive limit. What is it and is it always used appropriately? [J].
Butler, Patrick J. .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2006, 145 (01) :1-6
[7]  
BUTLER PJ, 1982, ADV COMP PHYSIOL BIO, V8, P179
[8]   Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods [J].
Butler, PJ ;
Green, JA ;
Boyd, IL ;
Speakman, JR .
FUNCTIONAL ECOLOGY, 2004, 18 (02) :168-183
[9]   Physiology of diving of birds and mammals [J].
Butler, PJ ;
Jones, DR .
PHYSIOLOGICAL REVIEWS, 1997, 77 (03) :837-899
[10]   Metabolic regulation in diving birds and mammals [J].
Butler, PJ .
RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2004, 141 (03) :297-315