Single-particle tracking of membrane protein diffusion in a potential:: Simulation, detection, and application to confined diffusion of CFTR Cl- channels

被引:64
作者
Jin, Songwan [1 ]
Haggie, Peter M. [1 ]
Verkman, A. S. [1 ]
机构
[1] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA
关键词
D O I
10.1529/biophysj.106.102244
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Confined diffusion of membrane receptors and lipids can result from intramembrane barriers, skeletal interactions, rafts, and other phenomena. We simulated single-particle diffusion in two dimensions in an arbitrary potential, V(r), based on summation of random and potential gradient-driven motions. Algorithms were applied and verified for detection of potential-driven diffusion, and for determination of V(r) from radial particle density distributions, taking into account experimental uncertainties in particle position and finite trajectory recording. Single-particle tracking (SPT) analysis of the diffusion of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in mammalian cells revealed confined diffusion with diffusion coefficient similar to 0.004 mu m(2)/s. SPT data fitted closely to a springlike attractive potential, V(r) = kr(2), but not to other V(r) forms such as hard-wall or viscoelastic-like potentials. The "spring constant'', k, determined from SPT data was 2.6 +/- 0.8 pN/mu m, and not altered significantly by modulation of skeletal protein architecture by jasplakinolide. However, k was reduced by a low concentration of latrunculin, supporting the involvement of actin in the springlike tethering of CFTR. Confined diffusion of membrane proteins is likely a general phenomenon suitable for noninvasive V(r) analysis of force- producing mechanisms. Our data provide the first measurement of actin elasticity, to the best of our knowledge, that does not involve application of an external force.
引用
收藏
页码:1079 / 1088
页数:10
相关论文
共 75 条
[1]   Microrheology of human lung epithelial cells measured by atomic force microscopy [J].
Alcaraz, J ;
Buscemi, L ;
Grabulosa, M ;
Trepat, X ;
Fabry, B ;
Farré, R ;
Navajas, D .
BIOPHYSICAL JOURNAL, 2003, 84 (03) :2071-2079
[2]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[3]   Membrane lateral diffusion and capture of CFTR within transient confinement zones [J].
Bates, Ian R. ;
Hebert, Benedict ;
Luo, Yishan ;
Liao, Jie ;
Bachir, Alexia I. ;
Kolin, David L. ;
Wiseman, Paul W. ;
Hanrahan, John W. .
BIOPHYSICAL JOURNAL, 2006, 91 (03) :1046-1058
[4]   Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry [J].
Bausch, AR ;
Ziemann, F ;
Boulbitch, AA ;
Jacobson, K ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2038-2049
[5]   COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments [J].
Benharouga, M ;
Haardt, M ;
Kartner, N ;
Lukacs, GL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (05) :957-970
[6]   The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia [J].
Benharouga, M ;
Sharma, M ;
So, J ;
Haardt, M ;
Drzymala, L ;
Popov, M ;
Schwapach, B ;
Grinstein, S ;
Du, K ;
Lukacs, GL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (24) :22079-22089
[7]   Regulation of AMPA receptor lateral movements [J].
Borgdorff, AJ ;
Choquet, D .
NATURE, 2002, 417 (6889) :649-653
[8]   Single molecule tracking of heterogeneous diffusion [J].
Cao, JS .
PHYSICAL REVIEW E, 2001, 63 (04) :411011-411017
[9]   Reversible stress softening of actin networks [J].
Chaudhuri, Ovijit ;
Parekh, Sapun H. ;
Fletcher, Daniel A. .
NATURE, 2007, 445 (7125) :295-298
[10]   The role of receptor diffusion in the organization of the postsynaptic membrane [J].
Choquet, D ;
Triller, A .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (04) :251-265