Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices

被引:175
作者
Arii, Motofumi [1 ]
van Zyl, Jakob J. [2 ]
Kim, Yunjin [2 ]
机构
[1] Mitsubishi Space Software Co Ltd, Kamakura, Kanagawa 2470065, Japan
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2011年 / 49卷 / 03期
关键词
Adaptive nonnegative eigenvalue decomposition (NNED); model-based decomposition; radar polarimetry; SCATTERING;
D O I
10.1109/TGRS.2010.2076285
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Previous model-based decomposition techniques are applicable to a limited range of vegetation types because of their specific assumptions about the volume scattering component. Furthermore, most of these techniques use the same model, or just a few models, to characterize the volume scattering component in the decomposition for all pixels in an image. In this paper, we extend the model-based decomposition idea by creating an adaptive model-based decomposition technique, allowing us to estimate both the mean orientation angle and a degree of randomness for the canopy scattering for each pixel in an image. No scattering reflection symmetry assumption is required to determine the volume contribution. We examined the usefulness of the proposed decomposition technique by decomposing the covariance matrix using the National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne Synthetic Aperture Radar data at the C-, L-, and P-bands. The randomness and mean orientation angle maps generated using our adaptive decomposition significantly improve the physical interpretation of the scattering observed at the three different frequencies.
引用
收藏
页码:1104 / 1113
页数:10
相关论文
共 17 条
  • [1] Arii M., 2009, P IEEE INT GEOSC REM
  • [2] Arii M, 2009, THESIS CALTECH PASAD, P68
  • [3] A General Characterization for Polarimetric Scattering From Vegetation Canopies
    Arii, Motofumi
    van Zyl, Jakob J.
    Kim, Yunjin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09): : 3349 - 3357
  • [4] Characterizing carbon in a northern forest by using SIR-C/X-SAR imagery
    Bergen, KM
    Dobson, MC
    Pierce, LE
    Ulaby, FT
    [J]. REMOTE SENSING OF ENVIRONMENT, 1998, 63 (01) : 24 - 39
  • [5] Cloude S. R., 1992, Direct and Inverse Methods in Radar Polarimetry. Proceedings of the NATO Advanced Research Workshop, P267
  • [6] An entropy based classification scheme for land applications of polarimetric SAR
    Cloude, SR
    Pottier, E
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01): : 68 - 78
  • [7] Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites
    Dobson, MC
    Pierce, LE
    Ulaby, FT
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (01): : 83 - 99
  • [8] MODELING AND OBSERVATION OF THE RADAR POLARIZATION SIGNATURE OF FORESTED AREAS
    DURDEN, SL
    VANZYL, JJ
    ZEBKER, HA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1989, 27 (03): : 290 - 301
  • [9] A three-component scattering model for polarimetric SAR data
    Freeman, A
    Durden, SL
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03): : 963 - 973
  • [10] APPLICATION OF NEURAL NETWORKS TO RADAR IMAGE CLASSIFICATION
    HARA, Y
    ATKINS, RG
    YUEH, SH
    SHIN, RT
    KONG, JA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (01): : 100 - 109