K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space

被引:67
作者
Bylesjo, Max [1 ]
Rantalainen, Mattias [2 ]
Nicholson, Jeremy K. [2 ]
Holmes, Elaine [2 ]
Trygg, Johan [1 ]
机构
[1] Umea Univ, Dept Chem, Chemometr Res Grp, SE-90187 Umea, Sweden
[2] Univ London Imperial Coll Sci Technol & Med, Fac Med, Dept Biomol Med, Div Surg Oncol Reprod Biol & Anaesthet, London SW7 2AZ, England
关键词
D O I
10.1186/1471-2105-9-106
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Kernel- based classification and regression methods have been successfully applied to modelling a wide variety of biological data. The Kernel- based Orthogonal Projections to Latent Structures ( K- OPLS) method offers unique properties facilitating separate modelling of predictive variation and structured noise in the feature space. While providing prediction results similar to other kernel- based methods, K- OPLS features enhanced interpretational capabilities; allowing detection of unanticipated systematic variation in the data such as instrumental drift, batch variability or unexpected biological variation. Results: We demonstrate an implementation of the K- OPLS algorithm for MATLAB and R, licensed under the GNU GPL and available at http://www.sourceforge.net/projects/kopls/. The package includes essential functionality and documentation for model evaluation ( using cross-validation), training and prediction of future samples. Incorporated is also a set of diagnostic tools and plot functions to simplify the visualisation of data, e. g. for detecting trends or for identification of outlying samples. The utility of the software package is demonstrated by means of a metabolic profiling data set from a biological study of hybrid aspen. Conclusion: The properties of the K- OPLS method are well suited for analysis of biological data, which in conjunction with the availability of the outlined open- source package provides a comprehensive solution for kernel- based analysis in bioinformatics applications.
引用
收藏
页数:7
相关论文
共 24 条
[1]  
Aizerman M., 1964, AUTOMAT REM CONTR, V25, P821, DOI DOI 10.1234/12345678
[2]   A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: Support vector machine classification of peptide MS/MS spectra and SEQUEST scores [J].
Anderson, DC ;
Li, WQ ;
Payan, DG ;
Noble, WS .
JOURNAL OF PROTEOME RESEARCH, 2003, 2 (02) :137-146
[3]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[4]   OPLS discriminant analysis:: combining the strengths of PLS-DA and SIMCA classification [J].
Bylesjo, Max ;
Rantalainen, Mattias ;
Cloarec, Olivier ;
Nicholson, Jeremy K. ;
Holmes, Elaine ;
Trygg, Johan .
JOURNAL OF CHEMOMETRICS, 2006, 20 (8-10) :341-351
[5]   Orthogonal projections to latent structures as a strategy for microarray data normalization [J].
Bylesjo, Max ;
Eriksson, Daniel ;
Sjodin, Andreas ;
Jansson, Stefan ;
Moritz, Thomas ;
Trygg, Johan .
BMC BIOINFORMATICS, 2007, 8 (1)
[6]   Statistical total correlation spectroscopy:: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets [J].
Cloarec, O ;
Dumas, ME ;
Craig, A ;
Barton, RH ;
Trygg, J ;
Hudson, J ;
Blancher, C ;
Gauguier, D ;
Lindon, JC ;
Holmes, E ;
Nicholson, J .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1282-1289
[7]   Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies [J].
Cloarec, O ;
Dumas, ME ;
Trygg, J ;
Craig, A ;
Barton, RH ;
Lindon, JC ;
Nicholson, JK ;
Holmes, E .
ANALYTICAL CHEMISTRY, 2005, 77 (02) :517-526
[8]   About kernel latent variable approaches and SVM [J].
Czekaj, T ;
Wu, W ;
Walczak, B .
JOURNAL OF CHEMOMETRICS, 2005, 19 (5-7) :341-354
[9]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[10]  
KIRKPATRICK S, 1983, SCIENCE, V220, P4598