A de novo designed peptide ligase:: A mechanistic investigation

被引:43
作者
Kennan, AJ
Haridas, V
Severin, K
Lee, DH
Ghadiri, MR [1 ]
机构
[1] Scripps Res Inst, Dept Chem, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[3] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/ja991266c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 33-residue de novo designed peptide ligase is reported which catalyzes the template-directed condensation of suitably activated short peptides with catalytic efficiencies in excess of 10(5) ([k(cat)/K-m]/k(uncat)) The ligase peptide, derived from natural and designed alpha-helical coiled-coil proteins, presents a surface for substrate assembly via formation of a hydrophobic core at the peptide interface. Charged residues flanking the core provide additional binding specificity through electrostatic complementarity. Addition of the template to an equimolar fragment solution results in up to 4100-fold increases in initial reaction rates. Dramatic decreases in efficiency upon mutation of charged residues or increase in ionic strength establishes the importance of electrostatic recognition to ligase efficiency. Although most of the increase in reaction efficiency is due to entropic gain from binding of substrates in close proximity, mechanistic studies with altered substrates demonstrate that the system is highly sensitive to precise ordering at the point of ligation. Taken together these results represent the first example of a peptide catalyst with designed substrate binding sites which can significantly accelerate a bimolecular reaction and support the general viability of alpha-helical protein assemblies in artificial enzyme design.
引用
收藏
页码:1797 / 1803
页数:7
相关论文
共 127 条
[1]   ENGINEERING SUBTILISIN AND ITS SUBSTRATES FOR EFFICIENT LIGATION OF PEPTIDE-BONDS IN AQUEOUS-SOLUTION [J].
ABRAHMSEN, L ;
TOM, J ;
BURNIER, J ;
BUTCHER, KA ;
KOSSIAKOFF, A ;
WELLS, JA .
BIOCHEMISTRY, 1991, 30 (17) :4151-4159
[2]   EFFICIENCY AND EVOLUTION OF ENZYME CATALYSIS [J].
ALBERY, WJ ;
KNOWLES, JR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1977, 16 (05) :285-293
[3]   Structure-reactivity relationship in interlocked molecular compounds and in their supramolecular model complexes [J].
Asakawa, M ;
Brown, CL ;
Menzer, S ;
Raymo, FM ;
Stoddart, JF ;
Williams, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (11) :2614-2627
[4]   DESIGN OF PEPTIDE ENZYMES (PEPZYMES) - SURFACE-SIMULATION SYNTHETIC PEPTIDES THAT MIMIC THE CHYMOTRYPSIN AND TRYPSIN ACTIVE-SITES EXHIBIT THE ACTIVITY AND SPECIFICITY OF THE RESPECTIVE ENZYME [J].
ATASSI, MZ ;
MANSHOURI, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :8282-8286
[5]   Functionalization of designed folded polypeptides [J].
Baltzer, L .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (04) :466-470
[6]   BASIC POLYPEPTIDES ACCELERATE THE HYDROLYSIS OF RIBONUCLEIC-ACIDS [J].
BARBIER, B ;
BRACK, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1988, 110 (20) :6880-6882
[7]   Thermodynamic analysis of a designed three-stranded coiled coil [J].
Boice, JA ;
Dieckmann, GR ;
DeGrado, WF ;
Fairman, R .
BIOCHEMISTRY, 1996, 35 (46) :14480-14485
[8]   BIOMIMETIC CHEMISTRY AND ARTIFICIAL ENZYMES - CATALYSIS BY DESIGN [J].
BRESLOW, R .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :146-153
[9]   Catalysis of hydrolysis and transesterification reactions of p-nitrophenyl esters by a designed helix-loop-helix dimer [J].
Broo, KS ;
Brive, L ;
Ahlberg, P ;
Baltzer, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (47) :11362-11372