Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

被引:50
作者
Saito, S. [1 ]
Gary, S. Peter [2 ]
Narita, Y. [3 ]
机构
[1] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany
基金
美国国家航空航天局; 日本学术振兴会;
关键词
ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE; INERTIAL-RANGE; ANISOTROPY;
D O I
10.1063/1.3526602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales. (C) 2010 American Institute of Physics. [doi:10.1063/1.3526602]
引用
收藏
页数:7
相关论文
共 19 条
[1]   Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales [J].
Alexandrova, O. ;
Saur, J. ;
Lacombe, C. ;
Mangeney, A. ;
Mitchell, J. ;
Schwartz, S. J. ;
Robert, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[2]   Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence [J].
Bale, SD ;
Kellogg, PJ ;
Mozer, FS ;
Horbury, TS ;
Reme, H .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[3]   Two-dimensional electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Drake, JF .
PHYSICAL REVIEW LETTERS, 1996, 76 (08) :1264-1267
[4]   Electron magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E ;
Zeiler, A ;
Celani, A ;
Drake, JF .
PHYSICS OF PLASMAS, 1999, 6 (03) :751-758
[5]  
Buneman O., 1993, SIMULATION TECHNIQUE, P67
[6]   Anisotropy of Solar Wind Turbulence between Ion and Electron Scales [J].
Chen, C. H. K. ;
Horbury, T. S. ;
Schekochihin, A. A. ;
Wicks, R. T. ;
Alexandrova, O. ;
Mitchell, J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[7]   The anisotropy of electron magnetohydrodynamic turbulence [J].
Cho, J ;
Lazarian, A .
ASTROPHYSICAL JOURNAL, 2004, 615 (01) :L41-L44
[8]   Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics [J].
Galtier, S ;
Bhattacharjee, A .
PHYSICS OF PLASMAS, 2003, 10 (08) :3065-3076
[9]  
Gary S. P., 1993, Theory of Space Plasma Microinstabilities
[10]   WHISTLER TURBULENCE WAVEVECTOR ANISOTROPIES: PARTICLE-IN-CELL SIMULATIONS [J].
Gary, S. Peter ;
Saito, Shinji ;
Narita, Yasuhito .
ASTROPHYSICAL JOURNAL, 2010, 716 (02) :1332-1335