The visible and infrared spectral properties of jarosite and alunite

被引:203
作者
Bishop, JL
Murad, E
机构
[1] SETI Inst, Mountain View, CA 94043 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Bayer Geol Landesamt, D-95603 Marktredwitz, Germany
关键词
D O I
10.2138/am.2005.1700
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The visible and infrared spectral properties of two natural jarosite minerals and a suite of synthetic jarosites and alunite samples are described here. The fundamental stretching and bending vibrations observed in the infrared region for SO42- and OH- are compared with the near-infrared overtones and combinations of these vibrations. Shifts were observed in the SO42- and OH- bands for Al3+ vs. Fe3+ at the octahedral sites and K+ vs. Na+ at the "A" (frequently monovalent) sites. Crystal-field theory bands were observed for jarosite near 435, 650, and 900-925 nm and were compared to those of iron oxides. Spectral bands near 1.76, 2.17, 2.53, 4.5, 8-10, and 15-24 mu m (corresponding to similar to 5670, 4600, 3970-4150, 2100-2300, 1000-1225, and 420-675 cm(-1), respectively) for alunite and near 0.43, 0.91, 1.85, 2.27, 2.63, 4.9, 8-10, and 15-24 mu m (corresponding to similar to 23 000, 10 990, 5400, 4350-4520, 3800-4150, 1950-2200, 1000-1190, and 440-675 cm(-1), respectively) for jarosite would be most useful for detecting these minerals using remote sensing on Earth or Mars. These minerals are important indicators of alteration processes, and this study contributes toward combined visible/near-infrared and mid-infrared spectral detection of these two alunite-group minerals.
引用
收藏
页码:1100 / 1107
页数:8
相关论文
共 64 条
[1]  
ADLER HH, 1965, AM MINERAL, V50, P132
[2]   Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum [J].
Bell, JF ;
Squyres, SW ;
Arvidson, RE ;
Arneson, HM ;
Bass, D ;
Calvin, W ;
Farrand, WH ;
Goetz, W ;
Gotombek, M ;
Greeley, R ;
Grotzinger, J ;
Guinness, E ;
Hayes, AG ;
Hubbard, MYH ;
Herkenhoff, KE ;
Johnson, MJ ;
Johnson, JR ;
Joseph, J ;
Kinch, KM ;
Lemmon, MT ;
Li, R ;
Madsen, MB ;
Maki, JN ;
Malin, M ;
McCartney, E ;
McLennan, S ;
McSween, HY ;
Ming, DW ;
Morris, RV ;
Dobrea, EZN ;
Sullivan, RJ ;
Weitz, CM ;
Wolff, MJ .
SCIENCE, 2004, 306 (5702) :1703-1709
[3]   Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation [J].
Bell, JF ;
Squyres, SW ;
Herkenhoff, KE ;
Maki, JN ;
Arneson, HM ;
Brown, D ;
Collins, SA ;
Dingizian, A ;
Elliot, ST ;
Hagerott, EC ;
Hayes, AG ;
Johnson, MJ ;
Johnson, JR ;
Joseph, J ;
Kinch, K ;
Lemmon, MT ;
Morris, RV ;
Scherr, L ;
Schwochert, M ;
Shepard, MK ;
Smith, GH ;
Sohl-Dickstein, JN ;
Sullivan, RJ ;
Sullivan, WT ;
Wadsworth, M .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2003, 108 (E12)
[4]   Mars surface diversity as revealed by the OMEGA/Mars Express observations [J].
Bibring, JP ;
Langevin, Y ;
Gendrin, A ;
Gondet, B ;
Poulet, F ;
Berthé, M ;
Soufflot, A ;
Arvidson, R ;
Mangold, N ;
Mustard, J ;
Drossart, P .
SCIENCE, 2005, 307 (5715) :1576-1581
[5]  
Bigham J.M., 1997, ADV GEOECOL, P193
[6]   Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage [J].
Bigham, JM ;
Schwertmann, U ;
Pfab, G .
APPLIED GEOCHEMISTRY, 1996, 11 (06) :845-849
[7]   Iron and aluminum hydroxysulfates from acid sulfate waters [J].
Bigham, JM ;
Nordstrom, DK .
SULFATE MINERALS - CRYSTALLOGRAPHY, GEOCHEMISTRY AND ENVIRONMENTAL SIGNIFICANCE, 2000, 40 :351-403
[8]   The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy [J].
Bishop, J ;
Murad, E ;
Dyar, MD .
CLAY MINERALS, 2002, 37 (04) :617-628
[9]  
BISHOP JL, 1995, ICARUS, V117, P101, DOI 10.1006/icar.1995.1145
[10]   INFRARED SPECTROSCOPIC ANALYSES ON THE NATURE OF WATER IN MONTMORILLONITE [J].
BISHOP, JL ;
PIETERS, CM ;
EDWARDS, JO .
CLAYS AND CLAY MINERALS, 1994, 42 (06) :702-716