Regularized Generalized Canonical Correlation Analysis

被引:231
作者
Tenenhaus, Arthur [1 ]
Tenenhaus, Michel [2 ]
机构
[1] Supelec, Dept Signal Proc & Elect Syst, F-91192 Gif Sur Yvette, France
[2] HEC PARIS, Jouy En Josas, France
关键词
generalized canonical correlation analysis; multi-block data analysis; PLS path modeling; regularized canonical correlation analysis; REGRESSION; MULTIBLOCK; COMPONENT; MODELS;
D O I
10.1007/s11336-011-9206-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and the flexibility of PLS path modeling (the researcher decides which blocks are connected and which are not). Searching for a fixed point of the stationary equations related to RGCCA, a new monotonically convergent algorithm, very similar to the PLS algorithm proposed by Herman Wold, is obtained. Finally, a practical example is discussed.
引用
收藏
页码:257 / 284
页数:28
相关论文
共 42 条
[1]  
[Anonymous], 2004, KERNEL METHODS PATTE
[2]  
[Anonymous], 1996, Rev. Stat. Appl.
[3]  
[Anonymous], 1985, Encyclopedia of Statistical Sciences
[4]   Partial least squares for discrimination [J].
Barker, M ;
Rayens, W .
JOURNAL OF CHEMOMETRICS, 2003, 17 (03) :166-173
[5]   Continuum redundancy-PLS regression:: A simple continuum approach [J].
Bougeard, S. ;
Hanafi, M. ;
Qannari, E. M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (07) :3686-3696
[6]  
Bougeard S., 2007, J Soc Fr Stat, V148, P77
[7]  
Burnham AJ, 1996, J CHEMOMETR, V10, P31, DOI 10.1002/(SICI)1099-128X(199601)10:1<31::AID-CEM398>3.0.CO
[8]  
2-1
[9]  
Carroll J., 1968, EQUATIONS TABL UNPUB
[10]   ON A MULTIVARIATE EIGENVALUE PROBLEM .1. ALGEBRAIC-THEORY AND A POWER METHOD [J].
CHU, MT ;
WATTERSON, JL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05) :1089-1106