Analysis of the GAD1 promoter: Trans-acting factors and DNA methylation converge on the 5′ untranslated region

被引:32
作者
Chen, Ying [1 ]
Dong, Erbo [1 ]
Grayson, Dennis R. [1 ]
机构
[1] Univ Illinois, Dept Psychiat, Inst Psychiat, Coll Med, Chicago, IL 60612 USA
关键词
Schizophrenia; Methylation; Regulation; Histone deacetylase inhibitors; Interneurons; GLUTAMIC-ACID DECARBOXYLASE; MESSENGER-RNA EXPRESSION; GAMMA-AMINOBUTYRIC-ACID; BIPOLAR DISORDER; CLEFT-PALATE; PREFRONTAL CORTEX; HUMAN REELIN; MOUSE MODEL; DLX GENES; SCHIZOPHRENIA;
D O I
10.1016/j.neuropharm.2010.09.017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GAD67 corresponds to one of two enzymes that decarboxylates glutamate to produce gamma-aminobutyric acid, the main inhibitory neurotransmitter in the mammalian central nervous system, hence defining the cellular phenotype of a diverse set of inhibitory interneurons of the brain. Reduced cortical GAD67 mRNA levels have consistently been reported in schizophrenia and bipolar disorder with psychosis. The human gene encoding GAD67, GAD1, is located on chromosome 2q31.1 and the transcriptional start site resides within a large CpG island that spans a region extending from upstream through the first exon. We have analyzed the GAD1 promoter using transient transfection analysis of upstream and downstream sequences in NT2 cells, a human neuroprogenitor cell line. Interestingly, results from these studies show that cis-acting regulatory elements are located downstream of the RNA start site and are in the region corresponding to the first exon. Trans-acting factors such as Pitx2 and the Dlx family of transcription factors are active in promoting downstream reporter expression even when all of the 5' flanking sequences are removed. However, those constructs that contain an internal deletion from +66 to +173 bp fail to support expression even when these factors are provided in trans. We have previously shown that the Class I histone deacetylase inhibitor MS-275 potently activates GAD1 mRNA expression in NT2 cells suggesting the possibility that the promoter is sensitive to drugs that induce chromatin remodeling. Using methyl DNA immuneprecipitation of MS-275-treated NT2 cells, we provide data showing that Class I HDAC inhibition mediated an increase in GAD1 expression and that this was accompanied by decreased GAD1 promoter methylation. Moreover, the reduced levels of GAD1 DNA methylation are highest in those regions proximal to the location of the in vitro defined cis-acting regulatory elements. Our data suggest that changes in promoter methylation associated with gene regulation are not random but overlap the locations of proximal cis-acting elements. This article is part of a Special Issue entitled 'Trends in Neuropharmacology: In Memory of Erminio Costa'. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1075 / 1087
页数:13
相关论文
共 56 条
[1]   GENE-EXPRESSION FOR GLUTAMIC-ACID DECARBOXYLASE IS REDUCED WITHOUT LOSS OF NEURONS IN PREFRONTAL CORTEX OF SCHIZOPHRENICS [J].
AKBARIAN, S ;
KIM, JJ ;
POTKIN, SG ;
HAGMAN, JO ;
TAFAZZOLI, A ;
BUNNEY, WE ;
JONES, EG .
ARCHIVES OF GENERAL PSYCHIATRY, 1995, 52 (04) :258-266
[2]   Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders [J].
Akbarian, Schahram ;
Huang, Hsien-Sung .
BRAIN RESEARCH REVIEWS, 2006, 52 (02) :293-304
[3]  
Amendt BA, 1999, MOL CELL BIOL, V19, P7001
[4]   Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneuronogenesis [J].
Anderson, S ;
Mione, M ;
Yun, K ;
Rubenstein, JLR .
CEREBRAL CORTEX, 1999, 9 (06) :646-654
[5]   Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase [J].
Asada, H ;
Kawamura, Y ;
Maruyama, K ;
Kume, H ;
Ding, RG ;
Kanbara, N ;
Kuzume, H ;
Sanbo, M ;
Yagi, T ;
Obata, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6496-6499
[6]   A CIS-ACTING ELEMENT AND ASSOCIATED BINDING-FACTOR REQUIRED FOR CNS EXPRESSION OF THE DROSOPHILA-MELANOGASTER DOPA DECARBOXYLASE GENE [J].
BRAY, SJ ;
JOHNSON, WA ;
HIRSH, J ;
HEBERLEIN, U ;
TJIAN, R .
EMBO JOURNAL, 1988, 7 (01) :177-188
[7]   THE EXON-INTRON ORGANIZATION OF THE GENES (GAD1 AND GAD2) ENCODING 2 HUMAN GLUTAMATE DECARBOXYLASES (GAD(67) AND GAD(65)) SUGGESTS THAT THEY DERIVE FROM A COMMON ANCESTRAL GAD [J].
BU, DF ;
TOBIN, AJ .
GENOMICS, 1994, 21 (01) :222-228
[8]   CHROMATIN STRUCTURE IS REQUIRED TO BLOCK TRANSCRIPTION OF THE METHYLATED HERPES-SIMPLEX VIRUS THYMIDINE KINASE GENE [J].
BUSCHHAUSEN, G ;
WITTIG, B ;
GRAESSMANN, M ;
GRAESSMANN, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (05) :1177-1181
[9]   GAD67-Mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex [J].
Chattopadhyaya, Bidisha ;
Di Cristo, Graziella ;
Wu, Cai Zhi ;
Knott, Graham ;
Kuhlman, Sandra ;
Fu, Yu ;
Palmiter, Richard D. ;
Huang, Z. Josh .
NEURON, 2007, 54 (06) :889-903
[10]   On the epigenetic regulation of the human reelin promoter [J].
Chen, Y ;
Sharma, RP ;
Costa, RH ;
Costa, E ;
Grayson, DR .
NUCLEIC ACIDS RESEARCH, 2002, 30 (13) :2930-2939