The influence of inflow boundary conditions on intra left ventricle flow predictions

被引:48
作者
Long, Q [1 ]
Merrifield, R
Yang, GZ
Kilner, PJ
Firmin, DN
Xu, XY
机构
[1] Brunel Univ, Brunel Inst Bioengn, Uxbridge UB8 3PH, Middx, England
[2] Brunel Univ, Dept Mech Engn, Uxbridge UB8 3PH, Middx, England
[3] Univ London Imperial Coll Sci Technol & Med, Fac Engn, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Royal Brompton Hosp, Cardiovasc MR Unit, London SW3 6NP, England
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2003年 / 125卷 / 06期
关键词
D O I
10.1115/1.1635404
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The combination of computational fluid dynamics (CFD) and magnetic resonance imaging (MRI) offers a promising tool that enables the prediction of blood flow patterns in subject-specific cardiovascular models. The influence of the model geometry on the accuracy of the simulation is well recognized. This paper addresses the impact of different boundary conditions on subject-specific simulations of left ventricular (LV) flow. A novel hybrid method for prescribing effective inflow boundary conditions in the mitral valve plane has been developed. The detailed quantitative results highlight the strengths as well as the potential pitfalls of the approach.
引用
收藏
页码:922 / 927
页数:6
相关论文
共 13 条
[1]   Numerical simulation of the blood-wall interaction in the human left ventricle [J].
Chahboune, B ;
Crolet, JM .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 1998, 2 (03) :291-297
[2]   MAGNETIC-RESONANCE VELOCITY MAPPING OF NORMAL HUMAN TRANSMITRAL VELOCITY PROFILES [J].
FUJIMOTO, S ;
MOHIADDIN, RH ;
PARKER, KH ;
GIBSON, DG .
HEART AND VESSELS, 1995, 10 (05) :236-240
[3]  
Jones TN, 1998, LECT NOTES COMPUT SC, V1496, P156, DOI 10.1007/BFb0056198
[4]   Asymmetric redirection of flow through the heart [J].
Kilner, PJ ;
Yang, GZ ;
Wilkes, AJ ;
Mohiaddin, RH ;
Firmin, DN ;
Yacoub, MH .
NATURE, 2000, 404 (6779) :759-761
[5]   LEFT-VENTRICULAR BLOOD-FLOW PATTERNS IN NORMAL SUBJECTS - A QUANTITATIVE-ANALYSIS BY 3-DIMENSIONAL MAGNETIC-RESONANCE VELOCITY MAPPING [J].
KIM, WY ;
WALKER, PG ;
PEDERSEN, EM ;
POULSEN, PK ;
OYRE, S ;
HOULIND, K ;
YOGANATHAN, AP .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1995, 26 (01) :224-238
[6]   Computational modeling of left heart diastolic function: Examination of ventricular dysfunction [J].
Lemmon, JD ;
Yoganathan, AP .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (04) :297-303
[7]   Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation [J].
Long, Q ;
Xu, XY ;
Collins, MW ;
Bourne, M ;
Griffith, TM .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 1998, 56 (03) :249-259
[8]  
PESKIN CS, 1992, CRIT REV BIOMED ENG, V20, P451
[9]   MODELING PROSTHETIC HEART-VALVES FOR NUMERICAL-ANALYSIS OF BLOOD-FLOW IN THE HEART [J].
PESKIN, CS ;
MCQUEEN, DM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (01) :113-132
[10]   Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics [J].
Saber, NR ;
Wood, NB ;
Gosman, AD ;
Merrifield, RD ;
Yang, GZ ;
Charrier, CL ;
Gatehouse, PD ;
Firmin, DN .
ANNALS OF BIOMEDICAL ENGINEERING, 2003, 31 (01) :42-52