A new method to model membrane protein structure based on silent amino acid substitutions

被引:42
作者
Briggs, JAG [1 ]
Torres, J [1 ]
Arkin, IT [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge Ctr Mol Recognit, Cambridge CB2 1QW, England
关键词
membrane proteins; CD3-zeta; glycophorin; molecular dynamics; proteomics; molecular modeling;
D O I
10.1002/prot.1102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The importance of accurately modeling membrane proteins cannot be overstated, in lieu of the difficulties in solving their structures experimentally. Often, however, modeling procedures (e.g., global searching molecular dynamics) generate several possible candidates rather then pointing to a single model. Herein we present a new approach to select among candidate models based on the general hypothesis that silent amino acid substitutions, present in variants identified from evolutionary conservation data or mutagenesis analysis, do not affect the stability of a native structure but may destabilize the non-native structures also found. The proof of this hypothesis has been tested on the alpha -helical transmembrane domains of two homodimers, human glycophorin A and human CD3-zeta, a component of the T-cell receptor. For both proteins, only one structure was identified using all the variants. For glycophorin A, this structure is virtually identical to the structure determined experimentally by NAM. We present a model for the transmembrane domain of CD3-zeta that is consistent with predictions based on mutagenesis, homology modeling, and the presence of a disulfide bond. Our experiments suggest that this method allows the prediction of transmembrane domain structure based only on widely available evolutionary conservation data. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:370 / 375
页数:6
相关论文
共 32 条
[1]  
Adams PD, 1996, PROTEINS, V26, P257, DOI 10.1002/(SICI)1097-0134(199611)26:3<257::AID-PROT2>3.3.CO
[2]  
2-O
[3]   COMPUTATIONAL SEARCHING AND MUTAGENESIS SUGGEST A STRUCTURE FOR THE PENTAMERIC TRANSMEMBRANE DOMAIN OF PHOSPHOLAMBAN [J].
ADAMS, PD ;
ARKIN, IT ;
ENGELMAN, DM ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :154-162
[4]   STRUCTURAL ORGANIZATION OF THE PENTAMERIC TRANSMEMBRANE ALPHA-HELICES OF PHOSPHOLAMBAN, A CARDIAC ION-CHANNEL [J].
ARKIN, IT ;
ADAMS, PD ;
MACKENZIE, KR ;
LEMMON, MA ;
BRUNGER, AT ;
ENGELMAN, DM .
EMBO JOURNAL, 1994, 13 (20) :4757-4764
[5]  
BLEASBY AJ, 1994, NUCLEIC ACIDS RES, V22, P3574
[6]  
Bolliger L, 1999, J IMMUNOL, V163, P3867
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   HELIX TO HELIX PACKING IN PROTEINS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 145 (01) :215-250
[9]   Multiple sequence information for threading algorithms [J].
Defay, TR ;
Cohen, FE .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 262 (02) :314-323
[10]   IDENTIFYING NONPOLAR TRANSBILAYER HELICES IN AMINO-ACID-SEQUENCES OF MEMBRANE-PROTEINS [J].
ENGELMAN, DM ;
STEITZ, TA ;
GOLDMAN, A .
ANNUAL REVIEW OF BIOPHYSICS AND BIOPHYSICAL CHEMISTRY, 1986, 15 :321-353