Integrative approaches to determining Csl function

被引:119
作者
Richmond, TA
Somerville, CR
机构
[1] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol Sci, Stanford, CA 94305 USA
关键词
Arabidopsis thaliana; cellulose synthase; DNA microarray; glycosyltransferase; Medicago truncatula; polysaccharide biosynthesis;
D O I
10.1023/A:1010627314782
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While there is an ever-increasing amount of information regarding cellulose synthase catalytic subunits (CesA) and their role in the formation of the cell wall, the remainder of the enzymes that synthesize structural cell wall polysaccharides are unknown. The completion of the Arabidopsis genome and the wealth of the sequence information from other plant genome projects provide a rich resource for determining the identity of these enzymes. Arabidopsis contains six families of genes related to cellulose synthase, the cellulose synthase-like (Csl) genes. Our laboratory is taking a multidisciplinary approach to determine the function of the Csl genes, incorporating genomic, genetic and biochemical data. Information from expressed sequence tag (EST) projects has revealed the presence of Csl genes in all plant species with a significant number of ESTs. Certain Csl families appear to be missing from some species. For example, no examples of CslG ESTs have been found in rice or maize. Microarray data and reporter constructs are being used to determine the expression pattern of the CesA and Csl genes in Arabidopsis. Mutations and insertion events have been identified in a majority of the genes in the Arabidopsis CesA superfamily and are being characterized by phenotypic and biochemical analysis. While we cannot yet link the function of any of the Csl genes to their respective products, the expression and localization of these genes is consistent with the expected expression pattern of polysaccharide synthases that contribute to the primary cell wall.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 48 条
[1]   Molecular analysis of cellulose biosynthesis in Arabidopsis [J].
Arioli, T ;
Peng, LC ;
Betzner, AS ;
Burn, J ;
Wittke, W ;
Herth, W ;
Camilleri, C ;
Höfte, H ;
Plazinski, J ;
Birch, R ;
Cork, A ;
Glover, J ;
Redmond, J ;
Williamson, RE .
SCIENCE, 1998, 279 (5351) :717-720
[2]  
Aspinall G. O., 1980, The biochemistry of plants. A comprehensive treatise. Volume 3. Carbohydrates: structure and function., P473
[3]   The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose [J].
Bonin, CP ;
Potter, I ;
Vanzin, GF ;
Reiter, WD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :2085-2090
[4]   Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids [J].
Broun, P ;
Shanklin, J ;
Whittle, E ;
Somerville, C .
SCIENCE, 1998, 282 (5392) :1315-1317
[5]   The mur4 mutant of arabidopsis is partially defective in the de novo synthesis of uridine diphospho L-arabinose [J].
Burget, EG ;
Reiter, WD .
PLANT PHYSIOLOGY, 1999, 121 (02) :383-389
[6]   A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities [J].
Campbell, JA ;
Davies, GJ ;
Bulone, V ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 326 :929-939
[7]  
Carpita N, 1996, PLANT CELL, V8, P1451
[8]   Botany - A recipe for cellulose [J].
Carpita, N ;
Vergara, C .
SCIENCE, 1998, 279 (5351) :672-673
[9]   Structure and biogenesis of the cell walls of grasses [J].
Carpita, NC .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :445-476
[10]   Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J].
Chuang, CF ;
Meyerowitz, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4985-4990