Uniqueness of positive fixed points for increasing concave functions on Rn:: An elementary result

被引:40
作者
Kennan, J
机构
[1] Univ Wisconsin, Dept Econ, Madison, WI 53706 USA
[2] NBER, Cambridge, MA 02138 USA
关键词
fixed points; concavity;
D O I
10.1006/redy.2001.0133
中图分类号
F [经济];
学科分类号
02 ;
摘要
The square root function has a unique positive fixed point. This function has the following properties: it is strictly increasing and strictly concave, with f (0) = 0, and there are points a > 0 and b > 0 such that f (a) > a and f (b) < b. It is shown that any function from R-n to R-n satisfying these properties has a unique positive fixed point. Journal of Economic Literature Classification Number: C62. (C) 2001 Academic Press.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 7 条
[1]  
COLEMAN WJ, 1991, ECONOMETRICA, V59, P1091
[2]  
DATTA M, 1999, UNPUB EXISTENCE UNIQ
[3]  
KATZMAN B, 2000, UNPUB OUTPUT PRICE L
[4]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
[5]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[6]  
Smith H. L., 1995, MONOTONE DYNAMICAL S
[7]  
Tarski A., 1955, Pacific Journal of Mathematics, V5, P285, DOI [10.2140/pjm.1955.5.285, DOI 10.2140/PJM.1955.5.285]