Differential molecular assemblies underlie the dual function of axin in modulating the Wnt and JNK pathways

被引:34
作者
Zhang, Y
Qiu, WJ
Liu, DX
Neo, SY
He, X
Lin, SC
机构
[1] Inst Mol & Cell Biol, Regulatory Biol Lab, Singapore 117609, Singapore
[2] Harvard Univ, Sch Med, Childrens Hosp, Div Neurosci, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M104451200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Axin is a multidomain scaffold protein that exerts a dual function in the Wnt signaling and MEKK1/JNK pathways. This raises a critical question as to whether Axin-based differential molecular assemblies exist and how these may act to coordinate the two separate pathways. Here we show that both wild-type glycogen synthase kinase-3 beta (GSK-3 beta) and kinase-dead GSK-3 beta -Y216F (capable of binding to Axin), but not GSK-3 beta -K85M (incapable of binding to Axin in mammalian cells), prevented MEKK1 binding to the Axin complex, thereby inhibiting JNK activation. We further show that casein kinase le also inhibited Axin-mediated JNK activation by competing against MEKK1 binding. In contrast,. beta -catenin and adenomatous polyposis coli binding did not affect MEKK1 binding to the same Axin complex. This suggests that even when Axin is "switched" to activate the JNK pathway, it is still capable of sequestering free beta -catenin, which is a critical aspect for cellular homeostasis. Our results clearly demonstrate that differential molecular assemblies underlie the duality of Axin functions in the negative regulation of Wnt signaling and activation of the JNK MAPK pathway.
引用
收藏
页码:32152 / 32159
页数:8
相关论文
共 57 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   Wnt signalling: pathway or network? [J].
Arias, AM ;
Brown, AMC ;
Brennan, K .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (04) :447-454
[3]   NH2-terminal deletion of beta-catenin results in stable colocalization of mutant beta-catenin with adenomatous polyposis coli protein and altered MDCK cell adhesion [J].
Barth, AIM ;
Pollack, AL ;
Altschuler, Y ;
Mostov, KE ;
Nelson, WJ .
JOURNAL OF CELL BIOLOGY, 1997, 136 (03) :693-706
[4]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[5]   APC: the plot thickens [J].
Bienz, M .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (05) :595-603
[6]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[7]   Axin and hepatocellular carcinomas [J].
Clevers, H .
NATURE GENETICS, 2000, 24 (03) :206-208
[8]   Differential regulation of glycogen synthase kinase 3β by insulin and Wnt signaling [J].
Ding, VW ;
Chen, RH ;
McCormick, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32475-32481
[9]   ROLE OF GLYCOGEN-SYNTHASE KINASE 3-BETA AS A NEGATIVE REGULATOR OF DORSOVENTRAL AXIS FORMATION IN XENOPUS EMBRYOS [J].
DOMINGUEZ, I ;
ITOH, K ;
SOKOL, SY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8498-8502
[10]   Domains of Axin involved in protein-protein interactions, Wnt pathway inhibition, and intracellular localization [J].
Fagotto, F ;
Jho, EH ;
Zeng, L ;
Kurth, T ;
Joos, T ;
Kaufmann, C ;
Costantini, F .
JOURNAL OF CELL BIOLOGY, 1999, 145 (04) :741-756