Spectrum of ballooning instabilities in a stellarator

被引:45
作者
Cooper, WA
Singleton, DB
Dewar, RL
机构
[1] AUSTRALIAN NATL UNIV, SUPERCOMP FACIL, CANBERRA, ACT 0200, AUSTRALIA
[2] AUSTRALIAN NATL UNIV, RES SCH PHYS SCI & ENGN, PLASMA RES LAB, CANBERRA, ACT 0200, AUSTRALIA
[3] AUSTRALIAN NATL UNIV, RES SCH PHYS SCI & ENGN, DEPT THEORET PHYS, CANBERRA, ACT 0200, AUSTRALIA
关键词
D O I
10.1063/1.871853
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The recent revival of interest in the application of the ''ballooning formaiism'' to low-frequency plasma instabilities has prompted a comparison of the Wentzel-Kramers-Brillouin (WKB) ballooning approximation with an (in principle) exact normal mode calculation for a three-dimensional plasma equilibrium. Semiclassical quantization, using the ideal magnetohydrodynamic (MHD) ballooning eigenvalue to provide a local dispersion relation, is applied to a ten-field period stellarator test case. Excellent qualitative agreement, and good quantitative agreement is found with predictions from the TERPSICHORE code [D. V.Anderson et al., Int. J. Supercomput. Appl. 4, 34 (1990)] for toroidal mode numbers from 1 to 14 and radial mode numbers from 0 to 2. The continuum bands predicted from three-dimensional WKB theory are too narrow to resolve. (C) 1996 American Institute of Physics.
引用
收藏
页码:275 / 280
页数:6
相关论文
共 27 条
[1]   METHODS FOR THE EFFICIENT CALCULATION OF THE (MHD) MAGNETOHYDRODYNAMIC STABILITY PROPERTIES OF MAGNETICALLY CONFINED FUSION PLASMAS [J].
ANDERSON, DV ;
COOPER, WA ;
GRUBER, R ;
MERAZZI, S ;
SCHWENN, U .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1990, 4 (03) :34-47
[2]  
ANDERSON DV, 1989, JOINT VARENNA LAUSAN, P93
[3]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[4]  
Blelloch G., 1990, VECTOR MODELS DATA P
[5]   GUIDING CENTER DRIFT EQUATIONS [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1980, 23 (05) :904-908
[6]   HIGH MODE NUMBER STABILITY OF AN AXISYMMETRIC TOROIDAL PLASMA [J].
CONNOR, JW ;
HASTIE, RJ ;
TAYLOR, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 365 (1720) :1-17
[7]   SHEAR DAMPING OF DRIFT WAVES IN TOROIDAL PLASMAS [J].
CONNOR, JW ;
TAYLOR, JB ;
WILSON, HR .
PHYSICAL REVIEW LETTERS, 1993, 70 (12) :1803-1805
[8]   VARIATIONAL FORMULATION OF THE LINEAR MHD STABILITY OF 3D-PLASMAS WITH NONINTERACTING HOT-ELECTRONS [J].
COOPER, WA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1992, 34 (06) :1011-1036
[9]  
COOPER WA, 1990, JOINT VARENNA LAUSAN, P655
[10]   RADIAL STRUCTURE OF HIGH-MODE-NUMBER TOROIDAL MODES IN GENERAL EQUILIBRIUM PROFILES - COMMENT [J].
DEWAR, RL ;
ZHANG, YZ ;
MAHAJAN, SM .
PHYSICAL REVIEW LETTERS, 1995, 74 (22) :4563-4563