Applications of coding theory to the construction of modular lattices

被引:125
作者
Bachoc, C
机构
[1] Lab. d'Algorithmique A., C.N.R.S., Course de la Liberation
关键词
D O I
10.1006/jcta.1996.2763
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study self-dual codes over certain finite rings which are quotients of quadratic imaginary fields or of totally definite quaternion fields over Q. A natural weight taking two different nonzero values is defined over these rings: using invariant theory, we give a basis for the space of invariants to which belongs the three variables weight enumerator of a self-dual code. A general bound for the weight of such codes is derived. We construct a number of extremal self-dual codes, which are the codes reaching this bound, and derive some extremal lattices of level l = 2, 3, 7 and minimum 4, 6, 8. (C) 1997 Academic Press.
引用
收藏
页码:92 / 119
页数:28
相关论文
共 26 条
[1]  
Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
[2]   NEIGHBORHOOD IN THE SENSE OF KNESER FOR QUATERNIONIC NETWORKS [J].
BACHOC, C .
COMMENTARII MATHEMATICI HELVETICI, 1995, 70 (03) :350-374
[3]  
BATUT C, IN PRESS EXP MATH
[4]  
Conway J., 1985, ATLAS FINITE GROUPS
[5]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[6]   SELF-DUAL CODES OVER GF(3) AND GF(4) OF LENGTH NOT EXCEEDING 16 [J].
CONWAY, JH ;
PLESS, V ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (03) :312-322
[7]   THE COXETER-TODD LATTICE, THE MITCHELL GROUP, AND RELATED SPHERE PACKINGS [J].
CONWAY, JH ;
SLOANE, NJA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1983, 93 (MAY) :421-440
[8]  
Conway JH., 1988, SPHERE PACKINGS LATT, DOI 10.1007/978-1-4757-2016-7
[9]  
DELSARTE P., 1973, PHILIPS RES REP S
[10]   SOME LATTICES OVER Q(SQUARE ROOT-3) [J].
FEIT, W .
JOURNAL OF ALGEBRA, 1978, 52 (01) :248-263