An introduction to quantum machine learning

被引:700
作者
Schuld, Maria [1 ]
Sinayskiy, Ilya [1 ,2 ]
Petruccione, Francesco [1 ,2 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Quantum Res Grp, ZA-4001 Durban, South Africa
[2] Natl Inst Theoret Phys NITheP, Kwa Zulu, South Africa
基金
新加坡国家研究基金会;
关键词
quantum machine learning; quantum computing; artificial intelligence; machine learning;
D O I
10.1080/00107514.2014.964942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.
引用
收藏
页码:172 / 185
页数:14
相关论文
共 66 条
[1]  
Aïmeur E, 2006, LECT NOTES ARTIF INT, V4013, P431
[2]   Quantum speed-up for unsupervised learning [J].
Aimeur, Esma ;
Brassard, Gilles ;
Gambs, Sebastien .
MACHINE LEARNING, 2013, 90 (02) :261-287
[3]  
[Anonymous], 2004, Introduction to machine learning
[4]  
[Anonymous], 2015, INTERDISCIPL S COMPL, DOI DOI 10.1007/978-3-319-10759-216
[5]  
[Anonymous], 2006, PATTERN RECOGN, DOI [DOI 10.1016/j.jneumeth.2014.06.016, DOI 10.1117/1.2819119]
[6]  
[Anonymous], INTRO THEORY NEURAL
[7]  
[Anonymous], 2000, Pattern Classification, DOI DOI 10.1007/978-3-319-57027-3_4
[8]  
[Anonymous], 2010, ARTIFICIAL INTELLIGE
[9]   Quantum partially observable Markov decision processes [J].
Barry, Jennifer ;
Barry, Daniel T. ;
Aaronson, Scott .
PHYSICAL REVIEW A, 2014, 90 (03)
[10]   Optimal quantum learning of a unitary transformation [J].
Bisio, Alessandro ;
Chiribella, Giulio ;
D'Ariano, Giacomo Mauro ;
Facchini, Stefano ;
Perinotti, Paolo .
PHYSICAL REVIEW A, 2010, 81 (03)