Phage Pierces the Host Cell Membrane with the Iron-Loaded Spike

被引:65
作者
Browning, Christopher [1 ]
Shneider, Mikhail M. [1 ,2 ]
Bowman, Valorie D. [3 ]
Schwarzer, David [1 ]
Leiman, Petr G. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Phys Syst Biol, Lab Struct Biol & Biophys, CH-1015 Lausanne, Switzerland
[2] Shemyakin Ovchinnikov Inst Bioorgan Chem, Lab Mol Bioengn, Moscow 117997, Russia
[3] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
基金
瑞士国家科学基金会;
关键词
SHORT TAIL FIBER; ESCHERICHIA-COLI; STRUCTURE PREDICTION; ELECTRON MICROSCOPE; T4; BACTERIOPHAGES; CRYSTAL-STRUCTURE; BINDING DOMAIN; P2; PHAGE; PROTEIN; BASEPLATE;
D O I
10.1016/j.str.2011.12.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteriophages with contractile tails and the bacterial type VI secretion system have been proposed to use a special protein to create an opening in the host cell membrane during infection. These proteins have a modular architecture but invariably contain an oligonucleotide/oligosaccharide-binding (OB-fold) domain and a long beta-helical C-terminal domain, which initiates the contact with the host cell membrane. Using X-ray crystallography and electron microscopy, we report the atomic structure of the membrane-piercing proteins from bacteriophages P2 and phi 92 and identify the residues that constitute the membrane-attacking apex. Both proteins form compact spikes with a similar to 10 angstrom diameter tip that is stabilized by a centrally positioned iron ion bound by six histidine residues. The accumulated data strongly suggest that, in the process of membrane penetration, the spikes are translocated through the lipid bilayer without undergoing major unfolding.
引用
收藏
页码:326 / 339
页数:14
相关论文
共 51 条
[1]   The Phenix software for automated determination of macromolecular structures [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Jain, Swati ;
Kapral, Gary J. ;
Kunstleve, Ralf W. Grosse ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert D. ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
METHODS, 2011, 55 (01) :94-106
[2]   The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria [J].
Aksyuk, Anastasia A. ;
Leiman, Petr G. ;
Kurochkina, Lidia P. ;
Shneider, Mikhail M. ;
Kostyuchenko, Victor A. ;
Mesyanzhinov, Vadim V. ;
Rossmann, Michael G. .
EMBO JOURNAL, 2009, 28 (07) :821-829
[3]  
Baker T.S., 2006, INT TABLES CRYSTALLO, P451
[4]   Structure of the bacteriophage T4 long tail fiber receptor-binding tip [J].
Bartual, Sergio G. ;
Otero, Jose M. ;
Garcia-Doval, Carmela ;
Llamas-Saiz, Antonio L. ;
Kahn, Richard ;
Fox, Gavin C. ;
van Raaij, Mark J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (47) :20287-20292
[5]   Tubules and donuts: a type VI secretion story [J].
Boenemann, Gabriele ;
Pietrosiuk, Aleksandra ;
Mogk, Axel .
MOLECULAR MICROBIOLOGY, 2010, 76 (04) :815-821
[6]   THERMAL UNFOLDING PATHWAY FOR THE THERMOSTABLE P22 TAILSPIKE ENDORHAMNOSIDASE [J].
CHEN, BL ;
KING, J .
BIOCHEMISTRY, 1991, 30 (25) :6260-6269
[7]   Recent developments in classical density modification [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :470-478
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   Cryo-EM study of the pseudomonas bacteriophage φKZ [J].
Fokine, Andrei ;
Battisti, Anthony J. ;
Bowman, Valorie D. ;
Efimov, Andrei V. ;
Kurochkina, Lidia P. ;
Chipman, Paul R. ;
Mesyanzhinov, Vadim V. ;
Rossmann, Michael G. .
STRUCTURE, 2007, 15 (09) :1099-1104
[10]   SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields [J].
Frank, J ;
Radermacher, M ;
Penczek, P ;
Zhu, J ;
Li, YH ;
Ladjadj, M ;
Leith, A .
JOURNAL OF STRUCTURAL BIOLOGY, 1996, 116 (01) :190-199